精英家教网 > 高中数学 > 题目详情
10.现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB分别交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的养殖区域.已知OA=1km,∠AOB=$\frac{π}{2}$,∠EOF=θ(0<θ<$\frac{π}{2}$).
(1)若区域Ⅱ的总面积为$\frac{1}{4}k{m^2}$,求θ的值;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?

分析 (1)推导出OD=OC,DE⊥OB,CF⊥OA,从而Rt△ODE≌Rt△OCF,进而∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,由此得到S区域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$),从而能求出θ.
(2)由S区域Ⅰ=$\frac{1}{2}θ$,求出S区域Ⅲ=S-S区域Ⅰ-S区域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.记年总收入为y万元,则y=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),y'=5(1-2sinθ),令y'=0,则θ=$\frac{π}{6}$.由此利用导数性质求出当θ=$\frac{π}{6}$时,年总收入最大.

解答 解:(1)∵BD=AC,OB=OA,∴OD=OC.
∵∠AOB=$\frac{π}{2}$,DE∥OA,CF∥OB,
∴DE⊥OB,CF⊥OA.
又∵OE=OF,∴Rt△ODE≌Rt△OCF.
∴∠DOE=∠COF=$\frac{1}{2}({\frac{π}{2}-θ})$,
又OC=OF•cos∠COF
∴S△COF=$\frac{1}{2}$•OC•OF•sin∠COF=$\frac{1}{4}$cosθ
∴S区域Ⅱ=$\frac{1}{2}cosθ$(0<θ<$\frac{π}{2}$).
由$\frac{1}{2}cosθ=\frac{1}{4}$,得cosθ=$\frac{1}{2}$,
∵0<θ<$\frac{π}{2}$,∴θ=$\frac{π}{3}$.
(2)∵S区域Ⅰ=$\frac{1}{2}θ$,∴S区域Ⅲ=S-S区域Ⅰ-S区域Ⅱ=$\frac{π}{4}-\frac{1}{2}θ-\frac{1}{2}$cosθ.
记年总收入为y万元,
则y=30×$\frac{1}{2}θ+40×\frac{1}{2}$cosθ$+20×({\frac{π}{4}-\frac{1}{2}θ}$$\left.{-\frac{1}{2}cosθ})$=5π+5θ+10cosθ(0<θ<$\frac{π}{2}$),
所以y'=5(1-2sinθ),令y'=0,则θ=$\frac{π}{6}$.
当0<θ<$\frac{π}{6}$时,y'>0;当$\frac{π}{6}<θ<\frac{π}{2}$时,y'<0.
故当θ=$\frac{π}{6}$时,y有最大值,即年总收入最大.

点评 本题考查扇形面积、导数的性质及应用、函数性质、构造法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+$\frac{1}{2}{x^2}$-ax(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|-1<x<3},N={x|x2-6x+8<0},则M∩N=(  )
A.(1,3)B.(2,3)C.(2,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数$f(x)=|\frac{x}{2}+\frac{1}{2a}|+|\frac{x}{2}-\frac{a}{2}|,(a>0)$.
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m+1,-m),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m的值为(  )
A.-1B.1C.-$\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,若f(lnx)<f(2),则x的取值范围是(  )
A.(0,e2B.(e-2,+∞)C.(e2,+∞)D.(e-2,e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$则z=3x+2y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R)
(1)若函数f(x)在区间(0,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{y}^{2}}{b}$-y2=1(b>0)有相同的焦点F1、F2,若P为两曲线的一个交点,则△PF1F2的面积为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案