精英家教网 > 高中数学 > 题目详情
12.已知△ABC的直角顶点A在y轴上,点B(1,0),D为斜边BC的中点,且AD平行于x轴.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线Γ,直线BC与Γ的另一个交点为E,以CE为直径的圆交y轴于点M,N,记圆心为P,∠MPN=α,求α的最大值.

分析 (1)设C(x,y),用x,y表示出A点坐标,根据AB⊥AC列方程化简即可;
(2)讨论BC的斜率,求出圆P的半径和横坐标,计算cos$\frac{α}{2}$,得出α的范围.

解答 解:(1)设C(x,y),则D($\frac{x+1}{2}$,$\frac{y}{2}$),A(0,$\frac{y}{2}$),
∴kAB=-$\frac{y}{2}$,kAC=$\frac{y}{2x}$,
∵AB⊥AC,
∴-$\frac{y}{2}$•$\frac{y}{2x}$=-1,即y2=4x,
∴点C的轨迹方程是y2=4x.
(2)①当直线BC无斜率时,直线BC的方程为x=1,此时C(1,2),E(1,-2),
P与B重合,M(0,$\sqrt{3}$),N(0,-$\sqrt{3}$),∴∠MPN=120°;
②当直线BC有斜率时,设直线BC的方程为y=k(x-1),
代入y2=4x得k2x2-(2k2+4)x+k2=0,
设C(x1,y1),E(x2,y2),则x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$=2+$\frac{4}{{k}^{2}}$,
∴|CE|=x1+x2+2=4+$\frac{4}{{k}^{2}}$,∴圆P的半径r=$\frac{1}{2}$|CE|=2+$\frac{2}{{k}^{2}}$,
P到y轴的距离d=$\frac{{x}_{1}+{x}_{2}}{2}$=1+$\frac{2}{{k}^{2}}$,
∴cos$\frac{α}{2}$=$\frac{d}{r}$=$\frac{1+\frac{2}{{k}^{2}}}{2+\frac{2}{{k}^{2}}}$=1-$\frac{1}{2+\frac{2}{{k}^{2}}}$,
∵k2>0,∴$\frac{1}{2}$<cos$\frac{α}{2}$<1,
又0°<$\frac{α}{2}$<90°,∴0°<$\frac{α}{2}$<60°,
∴0°<α<120°.
综上,α的最大值为120°.

点评 本题考查了轨迹方程的求解,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,若S10=110,且a1,a2,a4成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|0<x<2},B={x|x2<1},则A∪B=(  )
A.(0,1)B.(-1,2)C.(-1,1)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+$\frac{1}{2}{x^2}$-ax(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=ln(x+e)3(x>0)的值域为(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x+$\frac{x}{2}$=0;命题q:?x>0,x-x2<0,则下列命题是真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)为偶函数,且在[0,+∞)上单调递增,f(-3)=0,则满足f(x2-x+1)>0的x的取值范围为(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|-1<x<3},N={x|x2-6x+8<0},则M∩N=(  )
A.(1,3)B.(2,3)C.(2,4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}x+2≥y\\ x+2y≥4\\ y≤5-2x\end{array}\right.$则z=3x+2y的最大值为9.

查看答案和解析>>

同步练习册答案