分析 (1)设C(x,y),用x,y表示出A点坐标,根据AB⊥AC列方程化简即可;
(2)讨论BC的斜率,求出圆P的半径和横坐标,计算cos$\frac{α}{2}$,得出α的范围.
解答 解:(1)设C(x,y),则D($\frac{x+1}{2}$,$\frac{y}{2}$),A(0,$\frac{y}{2}$),
∴kAB=-$\frac{y}{2}$,kAC=$\frac{y}{2x}$,
∵AB⊥AC,
∴-$\frac{y}{2}$•$\frac{y}{2x}$=-1,即y2=4x,
∴点C的轨迹方程是y2=4x.
(2)①当直线BC无斜率时,直线BC的方程为x=1,此时C(1,2),E(1,-2),
P与B重合,M(0,$\sqrt{3}$),N(0,-$\sqrt{3}$),∴∠MPN=120°;
②当直线BC有斜率时,设直线BC的方程为y=k(x-1),
代入y2=4x得k2x2-(2k2+4)x+k2=0,
设C(x1,y1),E(x2,y2),则x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$=2+$\frac{4}{{k}^{2}}$,
∴|CE|=x1+x2+2=4+$\frac{4}{{k}^{2}}$,∴圆P的半径r=$\frac{1}{2}$|CE|=2+$\frac{2}{{k}^{2}}$,
P到y轴的距离d=$\frac{{x}_{1}+{x}_{2}}{2}$=1+$\frac{2}{{k}^{2}}$,
∴cos$\frac{α}{2}$=$\frac{d}{r}$=$\frac{1+\frac{2}{{k}^{2}}}{2+\frac{2}{{k}^{2}}}$=1-$\frac{1}{2+\frac{2}{{k}^{2}}}$,
∵k2>0,∴$\frac{1}{2}$<cos$\frac{α}{2}$<1,
又0°<$\frac{α}{2}$<90°,∴0°<$\frac{α}{2}$<60°,
∴0°<α<120°.
综上,α的最大值为120°.
点评 本题考查了轨迹方程的求解,直线与抛物线的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (-1,2) | C. | (-1,1) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (2,3) | C. | (2,4) | D. | (1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com