精英家教网 > 高中数学 > 题目详情
8.已知公差不为零的等差数列{an}的前n项和为Sn,若S10=110,且a1,a2,a4成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若数列{bn}前n项和Tn

分析 (Ⅰ)通过首项和公差表示出S10,a1,a2,a4,进而利用条件联立方程组,计算即可;
(Ⅱ)通过(I)的结论,利用裂项相消法即可求和.

解答 解析:(Ⅰ)由题意知:$\left\{{\begin{array}{l}{a_2^2={a_1}{a_4}}\\{{S_{10}}=110}\end{array}}\right.⇒\left\{{\begin{array}{l}{{{({{a_1}+d})}^2}={a_1}({{a_1}+3d})}\\{10{a_1}+45d=110}\end{array}}\right.$…..…(4分)
解得a1=d=2,
故数列an=2n;…(6分)
(Ⅱ)由(Ⅰ)可知${b_n}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,…..(8分)
则${T_n}=\frac{1}{2}[{({\frac{1}{1}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{2n-1}-\frac{1}{2n+1}})}]$…..(10分)
=$\frac{1}{2}({1-\frac{1}{2n+1}})=\frac{n}{2n+1}$…(12分)

点评 本题考查数列的通项与求和,考查裂项相消法,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z=i2016+($\frac{1+i}{1-i}$)2017(i是虚数单位)的共轭复数$\overline{z}$表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=2sinωx+2sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π,若x∈(0,$\frac{π}{2}$),则函数取得最大值时的x=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足a1+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n-1}}$=n,bn=nlog3a4n+1,n∈N*
(Ⅰ)设数列{an}、{bn}的通项;
(Ⅱ)设cn=$\frac{1}{{b}_{n}-1}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={0,1,2,3,4,5},集合A={0,2,4},B={1,3,4},则(∁UA)∩B=(  )
A.{4}B.{1,3}C.{1,3,4,5}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函数g(x)=f(x)+2x-a有三个不同的零点,则实数a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一长方体的体对角线的长为10,这条对角线在长方体一个面上的正投影长为8,则这 个长方体体积的最大值为192.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC的直角顶点A在y轴上,点B(1,0),D为斜边BC的中点,且AD平行于x轴.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线Γ,直线BC与Γ的另一个交点为E,以CE为直径的圆交y轴于点M,N,记圆心为P,∠MPN=α,求α的最大值.

查看答案和解析>>

同步练习册答案