分析 化函数y为正弦型函数,根据y的最小正周期求出ω的值,
写出y的解析式,求出x∈(0,$\frac{π}{2}$)函数y取得最大值时对应x的值.
解答 解:函数y=2sinωx+2sin(ωx+$\frac{π}{3}$)
=2sinωx+2sinωxcos$\frac{π}{3}$+2cosωxsin$\frac{π}{3}$
=3sinωx+$\sqrt{3}$cosωx
=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)
=2$\sqrt{3}$sin(ωx+$\frac{π}{6}$),(ω>0);
∴y的最小正周期为T=$\frac{2π}{ω}$=2π,
解得ω=1,∴y=2$\sqrt{3}$sin(x+$\frac{π}{6}$);
当x∈(0,$\frac{π}{2}$)时,x+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),
当x+$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{3}$时,函数y取得最大值为2$\sqrt{3}$sin($\frac{π}{3}$+$\frac{π}{6}$)=2$\sqrt{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查了三角函数的化简与求值问题,也考查了三角函数的图象与性质的应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{41}}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{5}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{1}{2},+∞})$ | B. | (0,+∞) | C. | (-1,+∞) | D. | .$({-\frac{1}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{13}{10}$ | B. | $\frac{19}{10}$ | C. | $\frac{3}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com