精英家教网 > 高中数学 > 题目详情
7.设点F1、F2分别为双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线左支上存在一点P,满足|PF1|=|PF2|,点F1到直线PF2的距离等于双曲线的实轴长,则该双曲线的离心率为(  )
A.$\frac{\sqrt{41}}{4}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{5}{3}$

分析 利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,进而求出离心率.

解答 解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,
由勾股定理知可知|PF1|=2$\sqrt{4{c}^{2}-4{a}^{2}}$=4b
根据双曲定义可知丨PF1丨-|PF2|=2a,即|4b-2c=2a,整理得c=2b-a,
代入c2=a2+b2整理得3b2-4ab=0,求得 $\frac{b}{a}$=$\frac{4}{3}$;
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{5}{3}$.
故选:D.

点评 本题考查三角形的性质与双曲线的定义的应用,突出了对计算能力和综合运用知识能力的考查,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.阅读如图所示的程序框图,运行相应的程序,输出的S=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设复数z满足z2=3+4i(i是虚数单位),则z的模为(  )
A.25B.5C.$\sqrt{5}$D.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},那么(∁IM)∩(∁IN)等于(  )
A.B.{d}C.{a,c}D.{b,e}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点F(1,0)的直线与椭圆C交于两点A、B,自A、B向直线x=5作垂线,垂足分别为A1、B1,且$\frac{|A{A}_{1}|}{AF}$=$\sqrt{5}$.
(1)求椭圆C的方程;
(2)记△AFA1、△FA1B1、△BFB1的面积分别为S1、S2、S3,证明:$\frac{{S}_{1}•{S}_{3}}{{{S}_{2}}^{2}}$是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z=i2016+($\frac{1+i}{1-i}$)2017(i是虚数单位)的共轭复数$\overline{z}$表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=2sinωx+2sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为2π,若x∈(0,$\frac{π}{2}$),则函数取得最大值时的x=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一长方体的体对角线的长为10,这条对角线在长方体一个面上的正投影长为8,则这 个长方体体积的最大值为192.

查看答案和解析>>

同步练习册答案