| A. | $\frac{\sqrt{41}}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{5}{3}$ |
分析 利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,进而求出离心率.
解答 解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影是其中点,
由勾股定理知可知|PF1|=2$\sqrt{4{c}^{2}-4{a}^{2}}$=4b
根据双曲定义可知丨PF1丨-|PF2|=2a,即|4b-2c=2a,整理得c=2b-a,
代入c2=a2+b2整理得3b2-4ab=0,求得 $\frac{b}{a}$=$\frac{4}{3}$;
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{5}{3}$.
故选:D.
点评 本题考查三角形的性质与双曲线的定义的应用,突出了对计算能力和综合运用知识能力的考查,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {d} | C. | {a,c} | D. | {b,e} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com