精英家教网 > 高中数学 > 题目详情
2.如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},那么(∁IM)∩(∁IN)等于(  )
A.B.{d}C.{a,c}D.{b,e}

分析 根据交集、补集的意义直接求解.或者根据(CIM)∩(CIN)=CI(M∪N)求解.

解答 解:CIM={b,e},CIN={a,c},∴(CIM)∩(CIN)=∅,
故选A

点评 本题考查集合的基本运算,较容易.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2})}&{x∈[0,π]}\\{lo{g}_{2017}\frac{x}{π}}&{x∈(π,+∞)}\end{array}\right.$若存在三个不相等的实数a,b,c使得f(a)=f(b)=f(c),则a+b+c的取值范围为(2π,2018π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a<-2”是“函数y=ax+3在区间(-1,3)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点M,N是抛物线y=ax2(a>0)上任意两点,点G(0,-1)满足$\overrightarrow{GN}$•$\overrightarrow{GM}$>0,则a的取值范围是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个交点为A,过A作x轴的垂线,垂足恰为该椭圆的焦点F,则该双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\frac{13}{4}$C.$\frac{9}{4}$D.$\frac{\sqrt{13}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点F1、F2分别为双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线左支上存在一点P,满足|PF1|=|PF2|,点F1到直线PF2的距离等于双曲线的实轴长,则该双曲线的离心率为(  )
A.$\frac{\sqrt{41}}{4}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题,济南市创新性的采用“公建民营”的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理,计划从中抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有5号,23号和29号,则下面号码中可能被抽到的号码是(  )
A.9B.12C.15D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,则满足f(f(m))>f(m)+1的m的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙两人下棋,已知两人下成和棋的概率为$\frac{1}{2}$,甲赢棋的概率为$\frac{1}{3}$,则甲输棋的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案