| A. | $({-\frac{1}{2},+∞})$ | B. | (0,+∞) | C. | (-1,+∞) | D. | .$({-\frac{1}{3},+∞})$ |
分析 结合选项通过特殊值验证法判断选项即可.
解答 解:函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,当m=0时,f(f(0))=f(1)=e,f(0)+1=1+1=2,
满足f(f(m))>f(m)+1,排除B;
当m=-$\frac{1}{2}$时,f(f(-$\frac{1}{2}$))=f(0)=-1,f(-$\frac{1}{2}$)+1=0+1=1,不满足题意,排除C;
当m=-$\frac{1}{3}$时,f(f($-\frac{1}{3}$))=f($\frac{1}{3}$)=${e}^{\frac{1}{3}}$,f(-$\frac{1}{3}$)+1=$\frac{4}{3}$,
∵e×33≈73,43=64,∴e$>(\frac{4}{3})^{3}$,即:${e}^{\frac{1}{3}}>\frac{4}{3}$.
可知m=-$\frac{1}{3}$,不等式成立.排除D.
故选:A.
点评 本题考查分段函数的应用,函数值的大小比较,本题选择题的解法值得同学学习.
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {d} | C. | {a,c} | D. | {b,e} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com