精英家教网 > 高中数学 > 题目详情
1.已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),则sin2α=-$\frac{4}{5}$.

分析 根据三角函数的定义,求出sinα和cosα,利用二倍角公式可得sin2α的值.

解答 解:由三角函数的定义,
可得:sinα=$\frac{y}{r}=\frac{y}{\sqrt{{x}^{2}+{y}^{2}}}$=$-\frac{2\sqrt{5}}{5}$,
cosα=$\frac{x}{r}=\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}$=$\frac{\sqrt{5}}{5}$,
那么sin2α=2sinαcosα=$-\frac{2\sqrt{5}}{5}$×2×$\frac{\sqrt{5}}{5}$=-$\frac{4}{5}$.
故答案为:$-\frac{4}{5}$.

点评 本题考查任意角的三角函数的定义,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过左焦点F且垂直于x轴的弦长为1.
( I)求椭圆C的标准方程;
(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{1}{2}$的直线l交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{cos(x-\frac{π}{2})}&{x∈[0,π]}\\{lo{g}_{2017}\frac{x}{π}}&{x∈(π,+∞)}\end{array}\right.$若存在三个不相等的实数a,b,c使得f(a)=f(b)=f(c),则a+b+c的取值范围为(2π,2018π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$m=({sinx-\sqrt{3}cosx,1}),n=({sin({\frac{π}{2}+x}),\frac{{\sqrt{3}}}{2}})$,若f(x)=m•n.
(I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f$({\frac{A}{2}+\frac{π}{12}})=\frac{1}{2}$,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≤1}\\{x+\frac{4}{x}-3,}&{x>1}\end{array}\right.$,则f(x)的值域是(  )
A.[1,+∞)B.[0,+∞)C.(1,+∞)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系xOy中,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{5}$,从C的右焦点F引渐近线的垂线,垂足为A,若△AFO的面积为1,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a<-2”是“函数y=ax+3在区间(-1,3)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点M,N是抛物线y=ax2(a>0)上任意两点,点G(0,-1)满足$\overrightarrow{GN}$•$\overrightarrow{GM}$>0,则a的取值范围是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,则满足f(f(m))>f(m)+1的m的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

同步练习册答案