11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¹ý×ó½¹µãFÇÒ´¹Ö±ÓÚxÖáµÄÏÒ³¤Îª1£®
£¨ I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©µãP£¨m£¬0£©ÎªÍÖÔ²CµÄ³¤ÖáÉϵÄÒ»¸ö¶¯µã£¬¹ýµãPÇÒбÂÊΪ$\frac{1}{2}$µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬ÎÊ£º|PA|2+|PB|2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ²¢Ö¤Ã÷£¬·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÍÖÔ²³¤Ö᳤Éè³öÍÖÔ²·½³Ì£¬ÀûÓõãÔÚÍÖÔ²ÉÏ£¬Çó³öb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£®
£¨¢ò£©Éè³öP£¬Ö±ÏßlµÄ·½³Ì£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬Éè³öA¡¢B×ø±ê£¬
ͨ¹ý¸ùÓëϵÊýµÄ¹ØÏµ£¬¼ÆËã|PA|2+|PB|2£¬»¯¼òÇó½â¼´¿É£®

½â´ð ½â£º£¨ I£©Óɹý×ó½¹µãFÇÒ´¹Ö±ÓÚxÖáµÄÏÒ³¤Îª1£¬
¿ÉÖªÍÖÔ²C¹ýµã$£¨-c£¬\frac{1}{2}£©$£¬¡à$\frac{c^2}{a^2}+\frac{1}{{4{b^2}}}=1$£¬
ÓÖ¡ße=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2=b2+c2£»
ÈýʽÁªÁ¢½âµÃ$a=2£¬b=1£¬c=\sqrt{3}$£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨ II£©ÉèP£¨m£¬0£©£¨ÇÒ-2¡Üm¡Ü2£©£¬ÓÉÒÑÖª£¬Ö±ÏßlµÄ·½³ÌÊÇy=$\frac{1}{2}$£¨x-m£©£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}£¨x-m£©}\\{\frac{{x}^{2}}{4}{+y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£¬2x2-2mx+m2-4=0£¬£¨*£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1¡¢x2ÊÇ·½³Ì£¨*£©µÄÁ½¸ö¸ù£¬
ËùÒÔÓУ¬x1+x2=m£¬x1x2=$\frac{{m}^{2}-4}{2}$£¬
ËùÒÔ£¬|PA|2+|PB|2=£¨x1-m£©2+y12+£¨x2-m£©2+y22
=£¨x1-m£©2+$\frac{1}{4}$£¨x1-m£©2+£¨x2-m£©2+$\frac{1}{4}$£¨x2-m£©2
=$\frac{5}{4}$[£¨x1-m£©2+£¨x2-m£©2]
=$\frac{5}{4}$[x12+x22-2m£¨x1+x2£©+2m2]
=$\frac{5}{4}$[£¨x1+x2£©2-2m£¨x1+x2£©-2x1x2+2m2]
=$\frac{5}{4}$[m2-2m2-£¨m2-4£©+2m2]=5£¨Îª¶¨Öµ£©£»
ËùÒÔ£¬|PA|2+|PB|2Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇó·¨ÒÔ¼°Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁ˶¨ÖµÎÊÌâµÄ»¯¼òÇó½â·½·¨£¬ÊÇ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éè¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©ÖеÄa¡¢b¾ùΪÕûÊý£¬ÇÒf£¨0£©¡¢f£¨1£©¾ùÎªÆæÊý£¬Ôò£¨¡¡¡¡£©
A£®·½³Ìf£¨x£©=0ÓÐÁ½¸ö²»ÏàµÈµÄÕûÊý¸ùB£®·½³Ìf£¨x£©=0ûÓÐÕûÊý¸ù
C£®·½³Ìf£¨x£©=0ÖÁÉÙÓÐÒ»¸öÕûÊý¸ùD£®·½³Ìf£¨x£©=0ÖÁ¶àÓÐÒ»¸öÕûÊý¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¡¶¾ÅÕÂËãÊõ¡·¡°¹´¹É¡±ÕÂÓÐÒ»Ì⣺¡°½ñÓжþÈËͬÁ¢£®¼×ÐÐÂÊÆß£¬ÒÒÐÐÂÊÈý£¬ÒÒ¶«ÐУ¬¼×ÄÏÐÐÊ®²½¶øÐ±¶«±±ÓëÒһᣬÎʼ×ÒÒ¸÷Ðм¸ºÎ£¿¡±´óÒâÊÇ˵£º¡°ÒÑÖª¼×¡¢ÒÒ¶þÈËͬʱ´ÓͬһµØµã³ö·¢£¬¼×µÄËÙ¶ÈΪ7£¬ÒÒµÄËÙ¶ÈΪ3£¬ÒÒÒ»Ö±Ïò¶«×ߣ¬¼×ÏÈÏòÄÏ×ß10²½£¬ºóÓÖбÏò±±Æ«¶«·½Ïò×ßÁËÒ»¶ÎºóÓëÒÒÏàÓö£®¼×¡¢ÒÒ¸÷×ßÁ˶àÉÙ²½£¿¡±ÇëÎÊÒÒ×ߵIJ½ÊýÊÇ£¨¡¡¡¡£©
A£®$\frac{9}{2}$B£®$\frac{15}{2}$C£®$\frac{21}{2}$D£®$\frac{49}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªP£¨x£¬y£©Îª²»µÈʽ×é$\left\{{\begin{array}{l}{x+y¡Ü4}\\{x-y¡Ü0}\\{x-m¡Ý0}\end{array}}\right.$±íʾµÄÆ½ÃæÇøÓòMÄÚÈÎÒâÒ»µã£¬ÈôÄ¿±êº¯Êýz=5x+3yµÄ×î´óÖµµÈÓÚÆ½ÃæÇøÓòMµÄÃæ»ý£¬Ôòm=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨k£¬k+1£©£¬$\overrightarrow{b}$=£¨1£¬-2£©ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÔòʵÊýkµÈÓÚ$-\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèµãM£¨x£¬y£©Âú×ã²»µÈʽ×é$\left\{\begin{array}{l}3x-y-6¡Ü0\\ x-y+2¡Ý0\\ x¡Ý0£¬y¡Ý0\end{array}\right.$£¬µãP£¨-4a£¬a£©£¨a£¾0£©£¬Ôòµ±$\overrightarrow{OP}•\overrightarrow{OM}$×î´óʱ£¬µãMΪ£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨0£¬0£©C£®£¨4£¬6£©D£®£¨2£¬6£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®µÈÑüÖ±½ÇÈý½ÇÐÎABCÖУ¬¡ÏC=90¡ã£¬AC=BC=2£¬µãPÊÇ¡÷ABCб±ßÉÏÈÎÒâÒ»µã£¬ÔòÏß¶ÎCPµÄ³¤¶È²»´óÓÚ$\sqrt{3}$µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\frac{{\sqrt{2}}}{4}$C£®$\frac{1}{2}$D£®$\frac{{\sqrt{6}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÃüÌâp£º?x¡Ê£¨1£¬+¡Þ£©£¬x3+16£¾8x£¬ÔòÃüÌâpµÄ·ñ¶¨Îª£¨¡¡¡¡£©
A£®?x¡Ê£¨1£¬+¡Þ£©£¬x3+16¡Ü8xB£®?x¡Ê£¨1£¬+¡Þ£©£¬x3+16£¼8x
C£®?x¡Ê£¨1£¬+¡Þ£©£¬x3+16¡Ü8xD£®?x¡Ê£¨1£¬+¡Þ£©£¬x3+16£¼8x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª½Ç¦ÁµÄ¶¥µãÓë×ø±êÔ­µãÖØºÏ£¬Ê¼±ßÓëxÖáµÄ·Ç¸º°ëÖáÖØºÏ£¬Öձ߾­¹ýµãP£¨1£¬-2£©£¬Ôòsin2¦Á=-$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸