精英家教网 > 高中数学 > 题目详情
9.已知向量$m=({sinx-\sqrt{3}cosx,1}),n=({sin({\frac{π}{2}+x}),\frac{{\sqrt{3}}}{2}})$,若f(x)=m•n.
(I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f$({\frac{A}{2}+\frac{π}{12}})=\frac{1}{2}$,sinC=2sinB,求A,c,b的值.

分析 (I)根据平面向量的数量积公式得出f(x)解析式,使用三角恒等变换化简,利用正弦函数的单调性列不等式解出;
(II)根据A的范围和f($\frac{A}{2}+\frac{π}{12}$)计算A,利用正弦定理和余弦定理求出b,c.

解答 解:(I)f(x)=(sinx-$\sqrt{3}$cosx)sin($\frac{π}{2}$+x)+$\frac{\sqrt{3}}{2}$
=(sinx-$\sqrt{3}$cosx)cosx+$\frac{\sqrt{3}}{2}$=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$得-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z,
∴f(x)的单调增区间是[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z.
(II)∵f($\frac{A}{2}$+$\frac{π}{12}$)=sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
且-$\frac{π}{6}$<A-$\frac{π}{6}$<$\frac{5π}{6}$,
∴A-$\frac{π}{6}$=$\frac{π}{6}$,即A=$\frac{π}{3}$.
∵sinC=2sinB,∴c=2b,
又a=3,由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{b}^{2}+4{b}^{2}-9}{4{b}^{2}}$=$\frac{1}{2}$,
解得b=$\sqrt{3}$,∴c=2$\sqrt{3}$.
综上,A=$\frac{π}{3}$,b=$\sqrt{3}$,c=2$\sqrt{3}$.

点评 本题考查了三角恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知P(x,y)为不等式组$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≤0}\\{x-m≥0}\end{array}}\right.$表示的平面区域M内任意一点,若目标函数z=5x+3y的最大值等于平面区域M的面积,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为(  )
A.?x∈(1,+∞),x3+16≤8xB.?x∈(1,+∞),x3+16<8x
C.?x∈(1,+∞),x3+16≤8xD.?x∈(1,+∞),x3+16<8x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读如图所示的程序框图,运行相应的程序,输出的S=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系中,已知点A,B分别为x轴、y轴上的点,且|AB|=1,若点P(1,$\frac{4}{3}})$),则$|{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{OP}}$|的取值范围是(  )
A.[5,6]B.[5,7]C.[4,6]D.[6,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(-1,$\sqrt{3}$),则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边经过点P(1,-2),则sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z=i2016+($\frac{1+i}{1-i}$)2017(i是虚数单位)的共轭复数$\overline{z}$表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案