精英家教网 > 高中数学 > 题目详情
7.已知动点M(x,y)到直线l:x=3的距离是它到点D(1,0)的距离的$\sqrt{3}$倍.
(1)求动点M的轨迹C的方程;
(2)设轨迹C上一动点T满足:$\overrightarrow{OT}$=2λ$\overrightarrow{OP}$+3μ$\overrightarrow{OQ}$,其中P、Q是轨迹C上的点,且直线OP与OQ的斜率之积为-$\frac{2}{3}$.若N(λ,μ)为一动点,F1(-$\frac{\sqrt{5}}{6}$,0)、F2($\frac{\sqrt{5}}{6}$,0)为两定点,求|NF1|+|NF2|的值.

分析 (1)设M(x,y),用x,y表示出距离,列方程化简即可;
(2)设P($\sqrt{3}$cosα,$\sqrt{2}$sinα),Q($\sqrt{3}$cosβ,$\sqrt{2}$sinβ),表示出T点坐标,代入曲线C的方程化简可得N的轨迹方程,利用椭圆的性质得出定值.

解答 解:(I)设M(x,y),则M到直线l的距离为|x-3|,MD=$\sqrt{(x-1)^{2}+{y}^{2}}$,
∴|x-3|=$\sqrt{3}$$\sqrt{(x-1)^{2}+{y}^{2}}$,化简得$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,
∴动点M的轨迹C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.
(II)设P($\sqrt{3}$cosα,$\sqrt{2}$sinα),Q($\sqrt{3}$cosβ,$\sqrt{2}$sinβ),
则kOP=$\frac{\sqrt{2}sinα}{\sqrt{3}cosα}$,kOQ=$\frac{\sqrt{2}sinβ}{\sqrt{3}cosβ}$,∴kOP•kOQ=$\frac{\sqrt{2}sinα}{\sqrt{3}cosα}$•$\frac{\sqrt{2}sinβ}{\sqrt{3}cosβ}$=-$\frac{2}{3}$,
∴sinαsinβ+cosαcosβ=0,
∵$\overrightarrow{OT}$=2λ$\overrightarrow{OP}$+3μ$\overrightarrow{OQ}$,∴T(2$\sqrt{3}$λcosα+3$\sqrt{3}$μcosβ,2$\sqrt{2}$λsinα+3$\sqrt{2}$μsinβ),
∵T在曲线C$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$上,
∴2(2$\sqrt{3}$λcosα+3$\sqrt{3}$μcosβ)2+3(2$\sqrt{2}$λsinα+3$\sqrt{2}$μsinβ)2=6,
化简得4λ2+9μ2=1,即$\frac{{λ}^{2}}{\frac{1}{4}}+\frac{{μ}^{2}}{\frac{1}{9}}=1$,
∴N(λ,μ)点轨迹方程为$\frac{{λ}^{2}}{\frac{1}{4}}+\frac{{μ}^{2}}{\frac{1}{9}}=1$,
F1(-$\frac{\sqrt{5}}{6}$,0)、F2($\frac{\sqrt{5}}{6}$,0)为此椭圆的两个焦点,
∴|NF1|+|NF2=2$\sqrt{\frac{1}{4}}$=1.

点评 本题考查了轨迹方程的求解,椭圆的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知复数z满足$z+\overline z=6$,|z|=5.
(1)求复数z的虚部;
(2)求复数$\frac{z}{1-i}$的实部.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“a>b”是“lna>lnb”的必要不充分条件(从“充分不必要”,“必要不充分”,“充要”和“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.角A、B、C为△ABC的三个内角,函数f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的图象关于直线x=$\frac{5π}{12}$对称,则A=(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|x>$\frac{1}{2}$或x<0},集合B={x|(x+1)(x-2)<0},则A∩B等于(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<0或$\frac{1}{2}$<x<2}C.{x|-1<x<$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$或1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2cosωx,-1),$\overrightarrow{n}$=($\sqrt{3}$sinωx+cosωx,1)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,若函数f(x)图象与x轴的两个相邻交点的距离为$\frac{π}{2}$.
(1)求函数f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=1,a=3,BC边上的高线长为$\frac{3\sqrt{3}}{2}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行四边形ABCD中,AB=2,∠DAB=$\frac{2}{3}$π,E是BC的中点,$\overrightarrow{AE}•\overrightarrow{BD}$=2,则AD=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${({2x-\frac{1}{{\sqrt{x}}}})^5}$的展开式中,$\sqrt{x}$的系数为-40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在公比为m的等比数列{an}中,a3=2,a1+a2+a3=6.
(1)求m.
(2)求{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案