2£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÇúÏßC½»xÖáÓÚA¡¢BÁ½µã£¬ÇÒµãAµÄºá×ø±êСÓÚµãBµÄºá×ø±ê£¬PΪֱÏßlÉϵ͝µã£¬Çó¡÷PABÖܳ¤µÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬µÃ¦Ñcos¦È-¦Ñsin¦È=1£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬ÓÉÇúÏßCµÄ²ÎÊý·½³ÌÄÜÇó³öCµÄÆÕͨ·½³Ì£®
£¨2£©ÇúÏßC±íʾԲÐÄ£¨5£¬0£©£¬°ë¾¶r=1µÄÔ²£¬Áîy=0£¬µÃA£¨4£¬0£©£¬B£¨6£¬0£©£¬×÷A¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãA1µÃA1£¨1£¬3£©£¬µ±PΪA1BÓëlµÄ½»µãʱ£¬¡÷PABµÄÖܳ¤×îС£¬ÓÉ´ËÄÜÇó³ö¡÷PABÖܳ¤µÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{2}}{2}$£¬
¡àÓÉÖ±ÏßlµÄ¼«×ø±ê·½³Ì£¬µÃ$¦Ñcos¦Èsin\frac{¦Ð}{4}-¦Ñsin¦Ècos\frac{¦Ð}{4}$=$\frac{\sqrt{2}}{2}$£¬¡­£¨2·Ö£©
¼´¦Ñcos¦È-¦Ñsin¦È=1£¬
¡àÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y=1£¬¼´x-y-1=0£¬¡­£¨3·Ö£©
¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÓÉÇúÏßCµÄ²ÎÊý·½³ÌµÃCµÄÆÕͨ·½³ÌΪ£º£¨x-5£©2+y2=1£®¡­£¨5·Ö£©
£¨2£©ÓÉ£¨1£©ÖªÇúÏßC±íʾԲÐÄ£¨5£¬0£©£¬°ë¾¶r=1µÄÔ²£¬
Áîy=0£¬µÃx=4»òx=6£®
¡àAµã×ø±êΪ£¨4£¬0£©£¬Bµã×ø±êΪ£¨6£¬0£©£® ¡­£¨7·Ö£©
×÷A¹ØÓÚÖ±ÏßlµÄ¶Ô³ÆµãA1µÃA1£¨1£¬3£©£®¡­£¨8·Ö£©
ÓÉÌâÉèÖªµ±PΪA1BÓëlµÄ½»µãʱ£¬¡÷PABµÄÖܳ¤×îС£¬
¡à¡÷PABÖܳ¤µÄ×îСֵΪ£º|AP|+|PB|+|AB|=|A1B|+|AB|=$\sqrt{34}+2$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐÎÖܳ¤µÄ×îСֵµÄÇ󷨣¬¿¼²é´úÊýʽµÄÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄÐÔÖʼ°»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚÕý·½ÐÎÍø¸ñÖ½ÉÏ£¬´ÖʵÏß»­³öµÄÊÇij¶àÃæÌåµÄÈýÊÓͼ¼°Æä²¿·Ö³ß´ç£¬Èô¸Ã¶àÃæÌåµÄ¶¥µãÔÚͬһÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýµÈÓÚ£¨¡¡¡¡£©
A£®8¦ÐB£®18¦ÐC£®24¦ÐD£®8$\sqrt{6}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2£¼1¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬¶¼ÓÐx2£¼1B£®?x¡ÊR£¬Ê¹µÃx2¡Ý1
C£®?x¡ÊR£¬¶¼ÓÐx¡Ü-1»òx¡Ý1D£®?x¡ÊR£¬Ê¹µÃx2£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÖʵؾùÔȵÄÕýËÄÃæÌå±íÃæ·Ö±ðÓ¡ÓÐ0£¬1£¬2£¬3ËĸöÊý×Ö£¬Ä³Í¬Ñ§Ëæ»úµÄÅ×ÖÀ´ÎÕýËÄÃæÌå2´Î£¬ÈôÕýËÄÃæÌåÓëµØÃæÖØºÏµÄ±íÃæÊý×Ö·Ö±ð¼ÇΪm£¬n£¬ÇÒÁ½´Î½á¹ûÏ໥¶ÀÁ¢£¬»¥²»Ó°Ï죮¼Çm2+n2¡Ü4ΪʼþA£¬ÔòʼþA·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{8}$B£®$\frac{3}{16}$C£®$\frac{¦Ð}{8}$D£®$\frac{¦Ð}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³Àâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®3¦ÐB£®2¦ÐC£®¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¶¨ÒåÔÚRÉϺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{x^2}£¬x¡Ê[{0£¬1}£©\\-{x^2}£¬x¡Ê[{-1£¬0}£©\end{array}$£¬ÇÒf£¨x+2£©=f£¨x£©£¬g£¨x£©=$\frac{1}{x-2}$£¬Ôò·½³Ìf£¨x£©=g£¨x£©ÔÚÇø¼ä[-3£¬7]ÉϵÄËùÓÐʵ¸ùÖ®ºÍΪ£¨¡¡¡¡£©
A£®9B£®10C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÈýÀâ×¶P-ABCµÄËĸö¶¥µã¾ùÔÚͬһÇòÃæÉÏ£¬ÆäÖС÷ABCÊÇÕýÈý½ÇÐΣ¬PA¡ÍÆ½ÃæABC£¬PA=2AB=2$\sqrt{3}$£¬Ôò¸ÃÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®8¦ÐB£®16¦ÐC£®32¦ÐD£®36¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=2|x+1|-|x-1|£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄͼÏóÓëÖ±Ïßy=1Χ³ÉµÄ·â±ÕͼÐεÄÃæ»ým£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Èô£¨a£¬b£©£¨a¡Ùb£©ÊǺ¯Êýg£¨x£©=$\frac{m}{x}$ͼÏóÉÏÒ»µã£¬Çó$\frac{{a}^{2}+{b}^{2}}{a-b}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¡°a+b=1¡±ÊÇ¡°Ö±Ïßx+y+1=0ÓëÔ²£¨x-a£©2+£¨y-b£©2=2ÏàÇС±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸