精英家教网 > 高中数学 > 题目详情
19.为了了解某校学生喜欢吃辣是否与性别有关,随机对此校100人进行调查,得到如下的列表:
喜欢吃辣不喜欢吃辣合计
男生40                  1050                           
女生2030                      50
合计6040100
已知在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(1)请将上面的列表补充完整;
(2)是否有99.9%以上的把握认为喜欢吃辣与性别有关?说明理由.

分析 (1)计算对于的数据,补充出2×2列联表即可;(2)计算k2的值,从而判断结论即可.

解答 解:(1)∵在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
∴在100人中,喜欢吃辣的有$\frac{3}{5}×100=60$,∴男生喜欢吃辣的有60-20=40,
列表补充如下:

喜欢吃辣不喜欢吃辣合计
男生401050
女生203050
合计6040100
…(5分)
(2)∵${K^2}=\frac{{100×{{({40×30-20×10})}^2}}}{50×50×60×40}=\frac{50}{3}≈16.667>10.828$
∴有99.9%以上的把握认为喜欢吃辣与性别有关.…(10分)

点评 本题考查了独立性检验,考查计算能力,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知集合A={a|一次函数y=(4a-1)x+b在R上是增函数},集合B=$\left.{\left\{{a|log_a^{\;}\frac{3}{4}<1}\right.}\right\}$.
(1)求集合A,B;
(2)设集合$C=(0,\frac{3}{4})$,求函数f(x)=x-$\frac{1}{x}$在A∩C上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-k-x,(x∈R).
(1)当k=0时,若函数f(x)≥m在R上恒成立,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在两点;若存在,求零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列运算中,正确的是(  )
A.x3•x2=x5B.x+x2=x3C.2x3÷x2=xD.($\frac{x}{2}$)3=$\frac{{x}^{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC的三个内角A,B,C的对边分别是a,b,c,$\frac{cosA-2cosC}{cosB}=\frac{2c-a}{b}$.
(1)若C=A+$\frac{π}{3}$,求角A的大小;
(2)若cosB=$\frac{1}{4}$,△ABC的周长为5,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从某实验班45名同学中随机抽取5名同学参加“挑战杯”竞赛,用随机数法确定这5名同学,现将随机数表摘录部分如下:
1622779439495443548217379323788735209643
8442175331572455068877047447672176335025
从随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第5个同学的编号为(  )
A.23B.37C.35D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,(n≥2)
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求:前n项和公式Sn
(3)证明:当n≥2时,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,已知行车道总宽度|AB|=6米,那么车辆通过隧道的限制高度是多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=3$,$|\overrightarrow{BC}|=4$,O为△ABC的内心,且$\overrightarrow{AO}=λ\overrightarrow{AB}+μ\overrightarrow{BC}$,则λ+μ=(  )
A.$\frac{3}{4}$B.$\frac{5}{9}$C.$\frac{7}{9}$D.$\frac{5}{7}$

查看答案和解析>>

同步练习册答案