| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $3\sqrt{2}$ |
分析 根据抛物线的性质和直角三角形的性质可知NE∥x轴,从而可得E点坐标,求出M、N的坐标,计算MN,NF即可求出三角形的面积.
解答
解:准线方程为x=-1,焦点为F(1,0),
不妨设N在第三象限,
∵∠MNF为直角,E是MF的中点,
∴NE=$\frac{1}{2}$MF=EF,
∴NE∥x轴,又E为MF的中点,E在抛物线y2=4x上,
∴E($\frac{1}{2}$,-$\sqrt{2}$),∴N(-1,-$\sqrt{2}$),M(0,-2$\sqrt{2}$),
∴NF=$\sqrt{6}$,MN=$\sqrt{3}$,
∴S△MNF=$\frac{1}{2}MN•NF$=$\frac{3\sqrt{2}}{2}$.
故选C.
点评 本题考查了抛物线的简单性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20173 | B. | 8 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在$({0,\frac{π}{3}})$上单调递增 | B. | 图象关于直线$x=\frac{π}{6}$对称 | ||
| C. | $f({\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$ | D. | 当$x=\frac{5π}{12}$时有最小值-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 0 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com