精英家教网 > 高中数学 > 题目详情
15.若实数x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,则z=x-2y的最大值是(  )
A.2B.1C.0D.-4

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,作出可行域如图,

化目标函数z=x-2y为直线方程的斜截式y=$\frac{1}{2}$x-$\frac{z}{2}$.
由图可知,当直线y=$\frac{1}{2}$x-$\frac{z}{2}$过点A时,直线在y轴上的截距最小,z最大,为z=1-2×0=1.
故选:B.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(2sin(x+$\frac{π}{6}$),-2),$\overrightarrow{b}$=(2,$\frac{\sqrt{3}}{2}$-2cosx).
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求sin(x+$\frac{4π}{3}$)的值;
(Ⅱ)设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若x∈[0,π],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“局部奇函数”,已知f(x)=4x-m2x+1+m-3为定义R上的“局部奇函数”,则实数m的取值范围是(  )
A.$[1-\sqrt{3},+∞)$B.[-2,+∞)C.$[-2,2\sqrt{2}]$D.$[-2,1+\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线C:y2=4x的焦点为F,N为准线上一点,M为y轴上一点,∠MNF为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$z=\frac{3i}{1-i}$,则复数z的虚部为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}i$D.$\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.i是虚数单位,则$\frac{2i}{1+3i}$=(  )
A.-$\frac{3}{5}$+$\frac{1}{5}$iB.$\frac{3}{4}$-$\frac{1}{4}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{4}$+$\frac{1}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a=$\frac{1}{18}$“是“对任意的正数x,x+$\frac{a}{2x}$≥$\frac{1}{3}$“的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:解答题

已知

(1)求的值;

(2)求的值.

查看答案和解析>>

同步练习册答案