10£®Ä³Ñ§Ð£Óüòµ¥Ëæ»ú³éÑù·½·¨³éÈ¡ÁË30Ãûͬѧ£¬¶ÔÆäÿÔÂÆ½¾ù¿ÎÍâÔĶÁʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©½øÐе÷²é£¬¾¥Ò¶Í¼Èçͼ£ºÈô½«Ô¾ù¿ÎÍâÔĶÁʱ¼ä²»µÍÓÚ30СʱµÄѧÉú³ÆÎª¡°¶ÁÊéÃÔ¡±£®
£¨1£©½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬¹À¼Æ¸ÃУ900ÃûѧÉúÖС°¶ÁÊéÃÔ¡±ÓжàÉÙÈË£¿
£¨2£©´ÓÒѳéÈ¡µÄ7Ãû¡°¶ÁÊéÃÔ¡±ÖÐËæ»ú³éÈ¡ÄС¢Å®¡°¶ÁÊéÃÔ¡±¸÷1ÈË£¬²Î¼Ó¶ÁÊéÈÕÐû´«»î¶¯£®
£¨i£©¹²ÓжàÉÙÖÖ²»Í¬µÄ³éÈ¡·½·¨£¿
£¨ii£©Çó³éÈ¡µÄÄС¢Å®Á½Î»¡°¶ÁÊéÃÔ¡±Ô¾ù¶ÁÊéʱ¼äÏà²î²»³¬¹ý2СʱµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©Éè¸ÃУ900ÃûѧÉúÖС°¶ÁÊéÃÔ¡±ÓÐxÈË£¬ÀûÓõȿÉÄÜʼþ¸ÅÂʼÆË㹫ʽÁгö·½³Ì£¬ÄÜÇó³ö¸ÃУ900ÃûѧÉúÖС°¶ÁÊéÃÔ¡±Ô¼ÓжàÉÙÈË£®
£¨2£©£¨¢¡£©Éè³éÈ¡µÄÄС°¶ÁÊéÃÔ¡±Îªa35£¬a38£¬a41£¬³éÈ¡µÄÅ®¡°¶ÁÊéÃÔ¡±Îªb34£¬b36£¬b38£¬b40£¨ÆäÖÐϽDZê±íʾ¸ÃÉúÔÂÆ½¾ù¿ÎÍâÔĶÁʱ¼ä£©£¬ÓÉ´ËÀûÓÃÁоٷ¨ÄÜͬ´Ó7Ãû¡°¶ÁÊéÃÔ¡±ÖÐËæ»ú³éÈ¡ÄС¢Å®¶ÁÊéÃÔ¸÷1È˵IJ»Í¬µÄ³éÈ¡·½·¨µÄÖÖÊý£®
£¨¢¢£©ÉèA±íʾʼþ¡°³éÈ¡µÄÄС¢Å®Á½Î»¶ÁÊéÃÔÔ¾ù¶ÁÊéʱ¼äÏà²î²»³¬¹ý2Сʱ¡±£¬ÀûÓÃÁоٷ¨Çó³öʼþA°üº¬µÄ»ù±¾Ê¼þ¸öÊý£¬ÓÉ´ËÄÜÇó³ö³éÈ¡µÄÄС¢Å®Á½Î»¡°¶ÁÊéÃÔ¡±Ô¾ù¶ÁÊéʱ¼äÏà²î²»³¬¹ý2СʱµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©Éè¸ÃУ900ÃûѧÉúÖС°¶ÁÊéÃÔ¡±ÓÐxÈË£¬
Ôò$\frac{7}{30}=\frac{x}{900}$£¬½âµÃx=210£®
ËùÒÔ¸ÃУ900ÃûѧÉúÖС°¶ÁÊéÃÔ¡±Ô¼ÓÐ210ÈË£®
£¨2£©£¨¢¡£©Éè³éÈ¡µÄÄС°¶ÁÊéÃÔ¡±Îªa35£¬a38£¬a41£¬
³éÈ¡µÄÅ®¡°¶ÁÊéÃÔ¡±Îªb34£¬b36£¬b38£¬b40£¨ÆäÖÐϽDZê±íʾ¸ÃÉúÔÂÆ½¾ù¿ÎÍâÔĶÁʱ¼ä£©£¬
Ôò´Ó7Ãû¡°¶ÁÊéÃÔ¡±ÖÐËæ»ú³éÈ¡ÄС¢Å®¶ÁÊéÃÔ¸÷1È˵ÄËùÓлù±¾Ê¼þΪ£º
£¨a35£¬b34£©£¬£¨a35£¬b36£©£¬£¨a35£¬b38£©£¬£¨a35£¬b40£©£¬£¨a38£¬b34£©£¬£¨a38£¬b36£©£¬
£¨a38£¬b38£©£¬£¨a38£¬b40£©£¬£¨a41£¬b34£©£¬£¨a41£¬b36£©£¬£¨a41£¬b38£©£¬£¨a41£¬b40£©£¬
ËùÒÔ¹²ÓÐ12ÖÖ²»Í¬µÄ³éÈ¡·½·¨£®
£¨¢¢£©ÉèA±íʾʼþ¡°³éÈ¡µÄÄС¢Å®Á½Î»¶ÁÊéÃÔÔ¾ù¶ÁÊéʱ¼äÏà²î²»³¬¹ý2Сʱ¡±£¬
ÔòʼþA°üº¬£º£¨a35£¬b34£©£¬£¨a35£¬b36£©£¬£¨a38£¬b36£©£¬£¨a38£¬b38£©£¬
£¨a38£¬b40£©£¬£¨a41£¬b40£©£¬6¸ö»ù±¾Ê¼þ£¬
ËùÒÔ³éÈ¡µÄÄС¢Å®Á½Î»¡°¶ÁÊéÃÔ¡±Ô¾ù¶ÁÊéʱ¼äÏà²î²»³¬¹ý2СʱµÄ¸ÅÂÊ$P£¨A£©=\frac{6}{12}=\frac{1}{2}$£®

µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼¡¢¸ÅÂÊ¡¢Áоٷ¨µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é¼¯ºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®DΪ¡÷ABCµÄ±ßBCµÄÖе㣬EΪADÖе㣬ÈôAD=a£¬Ôò£¨$\overrightarrow{EB}$+$\overrightarrow{EC}$£©•$\overrightarrow{EA}$=£¨¡¡¡¡£©
A£®-$\frac{{a}^{2}}{2}$B£®$\frac{{a}^{2}}{2}$C£®-2a2D£®a2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÈýÀâ×¶P-ABCÖУ¬µ×ÃæABCΪµÈ±ßÈý½ÇÐΣ¬OΪ¡÷ABCµÄÖÐÐÄ£¬Æ½ÃæPBC¡ÍÆ½ÃæABC£¬PB=PC=BC=$\sqrt{3}$£¬DΪAPÉÏÒ»µã£¬ÇÒAD=2DP£®
£¨I£©ÇóÖ¤£ºDO¡ÎÆ½ÃæPBC£»
£¨II£©ÇóÖ¤£ºAC¡ÍÆ½ÃæOBD£»
£¨III£©ÇóÈýÀâ×¶B-PDCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa1+a3=10£¬a2+a4=5£¬Ôòa5=£¨¡¡¡¡£©
A£®1B£®$\frac{1}{2}$C£®$\frac{1}{4}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôSn+an=4-$\frac{1}{{{2^{n-2}}}}£¨{n¡Ê{N^*}}£©$£¬Ôòan=$\frac{n}{{2}^{n-1}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x¡Ý0\\ y¡Ý0\\ 2x+y¡Ü2\end{array}\right.$£¬Ôòz=x-2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®2B£®1C£®0D£®-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÃæËĸöÌõ¼þÖУ¬Ê¹a£¾b³ÉÁ¢µÄ±ØÒª¶ø²»³ä·ÖÌõ¼þÊÇ£¨¡¡¡¡£©
A£®a-1£¾bB£®a+1£¾bC£®|a|£¾|b|D£®a3£¾b3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èô¸´ÊýzÂú×㣨z-3£©£¨2-i£©=5£¨iΪÐéÊýµ¥Î»£©£¬ÔòzµÄ¹²éÊý$\overline{z}$Ϊ£¨¡¡¡¡£©
A£®2+iB£®2-iC£®5-iD£®5+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓÄÏÊ¡ÐÂÏçÊи߶þÉÏѧÆÚÈëѧ¿¼Êýѧ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

É躯Êý£¬ÆäÖÐÏòÁ¿£¬£®

£¨1£©Çóº¯ÊýµÄ×îСÕýÖÜÆÚºÍÔÚÉϵĵ¥µ÷µÝÔöÇø¼ä£»

£¨2£©µ±Ê±£¬ºã³ÉÁ¢£¬ÇóʵÊýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸