14£®2017Äê4ÔÂ1ÈÕ£¬¹ú¼ÒÔÚºÓ±±Ê¡°×ÑóµíÒÔ±±µÄÐÛÏØ¡¢Èݳǡ¢°²ÐÂ3ÏØÉèÁ¢ÐÛ°²ÐÂÇø£¬ÕâÊǼÌÉîÛÚ¾­¼ÃÌØÇøºÍÉϺ£ÆÖ¶«ÐÂÇøÖ®ºóÓÖÒ»¾ßÓÐÈ«¹úÒâÒåµÄÐÂÇø£¬ÊÇǧÄê´ó¼Æ¡¢¹ú¼Ò´óÊ£¬¶à¼ÒÑëÆóΪÁËÅäºÏ¹ú¼ÒÕ½ÂÔÖ§³ÖÐÛ°²ÐÂÇø½¨É裬·×·×ÉêÇëÔÚÐÂÇø½¨Á¢·Ö¹«Ë¾£¬Èô¹æ¶¨Ã¿¼ÒÑëÆóÖ»ÄÜÔÚÐÛÏØ¡¢Èݳǡ¢°²ÐÂ3¸öÆ¬ÇøÖеÄÒ»¸öÆ¬ÇøÉèÁ¢·Ö¹«Ë¾£¬ÇÒÉêÇëÆäÖÐÈÎÒ»¸öÆ¬ÇøÉèÁ¢·Ö¹«Ë¾¶¼ÊǵȿÉÄܵģ¬Ã¿¼ÒÑëÆóÑ¡ÔñÄĸöÆ¬ÇøÏ໥֮¼ä»¥²»Ó°ÏìÇÒ±ØÐëÔÚÆäÖÐÒ»¸öÆ¬Çø½¨Á¢·Ö¹«Ë¾£¬ÏòÐÛ°²ÐÂÇøÉêÇ뽨Á¢·Ö¹«Ë¾µÄÈÎÒâ4¼ÒÑëÆóÖУº
£¨1£©ÇóÇ¡ÓÐ2¼ÒÑëÆóÉêÇëÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸ÅÂÊ£»
£¨2£©ÓÃX±íʾÕâ4¼ÒÑëÆóÖÐÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸öÊý£¬ÓÃY±íʾÔÚ¡°Èݳǡ±»ò¡°°²Ð¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸öÊý£¬¼Ç¦Î=|X-Y|£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨1£©¡¾·½·¨1¡¿¸ù¾ÝÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½¼ÆËã¼´¿É£»
¡¾·½·¨2¡¿ÀûÓùŵä¸ÅÐ͵ĸÅÂʹ«Ê½¼ÆËã¼´¿É£»
£¨2£©ÓÉÌâÒ⣬X¡«B£¨4£¬$\frac{1}{3}$£©£¬¸ù¾Ýn´Î¶ÀÁ¢Öظ´Ê¼þµÄ¸ÅÂʹ«Ê½£¬
¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³öËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©¡¾·½·¨1¡¿Ã¿¼ÒÑëÆóÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸ÅÂÊΪ$\frac{1}{3}$£¬
È¥ÁíÍâÁ½¸öÆ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸ÅÂÊÊÇ$\frac{2}{3}$£¬
ÔòÕâ4¼ÒÑëÆóÇ¡ÓÐ2¼ÒÑëÆóÉêÇëÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸ÅÂÊΪ
P=${C}_{4}^{2}$¡Á${£¨\frac{1}{3}£©}^{2}$¡Á${£¨1-\frac{1}{3}£©}^{2}$=$\frac{8}{27}$£»
¡¾·½·¨2¡¿ËùÓпÉÄܵÄÉêÇ뷽ʽÓÐ34=81ÖÖ£¬
Ç¡ÓÐ2¼ÒÑëÆóÉêÇëÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ·½Ê½Îª${C}_{4}^{2}$¡Á22=24ÖÖ£¬
´Ó¶øÇ¡ÓÐ2¼ÒÑëÆóÔÚ¡°ÐÛÏØ¡±Æ¬Çø½¨Á¢·Ö¹«Ë¾µÄ¸ÅÂÊΪ£º
P=$\frac{{C}_{4}^{2}{¡Á2}^{2}}{{3}^{4}}$=$\frac{8}{27}$£»
£¨2£©ÓÉÌâÒ⣬X¡«B£¨4£¬$\frac{1}{3}$£©£¬Ôò
P£¨X=k£©=${C}_{4}^{k}$•${£¨\frac{1}{3}£©}^{k}$•${£¨1-\frac{1}{3}£©}^{4-k}$£¬£¨ÆäÖÐk=0£¬1£¬2£¬3£¬4£©£»
Ôò¦ÎµÄËùÓпÉÄÜȡֵΪ0£¬2£¬4£»
P£¨¦Î=0£©=P£¨X=2£©=$\frac{8}{27}$£¬
P£¨¦Î=2£©=P£¨X=1£©+P£¨X=3£©=$\frac{40}{81}$£¬
P£¨¦Î=4£©=P£¨X=0£©+P£¨X=4£©=$\frac{17}{81}$£¬
ËùÒÔËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐΪ£º

¦Î024
P$\frac{8}{27}$$\frac{40}{81}$$\frac{17}{81}$
ÊýѧÆÚÍûΪE¦Î=0¡Á$\frac{8}{28}$+2¡Á$\frac{40}{81}$+4¡Á$\frac{17}{81}$=$\frac{148}{81}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½ÓëÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa2+c2-b2=3actanB£¬Ôò½ÇBµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{6}$»ò$\frac{5¦Ð}{6}$D£®$\frac{¦Ð}{3}$»ò$\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2sin£¨x+$\frac{¦Ð}{6}$£©£¬-2£©£¬$\overrightarrow{b}$=£¨2£¬$\frac{\sqrt{3}}{2}$-2cosx£©£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬Çósin£¨x+$\frac{4¦Ð}{3}$£©µÄÖµ£»
£¨¢ò£©Éèf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬Èôx¡Ê[0£¬¦Ð]£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô¼¯ºÏA={x|x£¾$\frac{1}{2}$»òx£¼0}£¬¼¯ºÏB={x|£¨x+1£©£¨x-2£©£¼0}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{x|$\frac{1}{2}$£¼x£¼2}B£®{x|-1£¼x£¼0»ò$\frac{1}{2}$£¼x£¼2}C£®{x|-1£¼x£¼$\frac{1}{2}$}D£®{x|0£¼x£¼$\frac{1}{2}$»ò1£¼x£¼2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êýf£¨x£©=axm£¨1-2x£©n£¨a£¾0£©ÔÚÇø¼ä[0£¬$\frac{1}{2}$]ÉϵÄͼÏóÈçͼËùʾ£¬Ôòm¡¢nµÄÖµ¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®m=1£¬n=1B£®m=1£¬n=2C£®m=2£¬n=3D£®m=3£¬n=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬AB=2£¬¡ÏDAB=$\frac{2}{3}$¦Ð£¬EÊÇBCµÄÖе㣬$\overrightarrow{AE}•\overrightarrow{BD}$=2£¬ÔòAD=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¶ÔÓÚº¯Êýf£¨x£©£¬ÈôÔÚ¶¨ÒåÓòÄÚ´æÔÚʵÊýx0£¬Âú×ãf£¨-x0£©=-f£¨x0£©£¬Ôò³Æf£¨x£©Îª¡°¾Ö²¿Ææº¯Êý¡±£¬ÒÑÖªf£¨x£©=4x-m2x+1+m-3Ϊ¶¨ÒåRÉϵġ°¾Ö²¿Ææº¯Êý¡±£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[1-\sqrt{3}£¬+¡Þ£©$B£®[-2£¬+¡Þ£©C£®$[-2£¬2\sqrt{2}]$D£®$[-2£¬1+\sqrt{3}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Å×ÎïÏßC£ºy2=4xµÄ½¹µãΪF£¬NΪ׼ÏßÉÏÒ»µã£¬MΪyÖáÉÏÒ»µã£¬¡ÏMNFΪֱ½Ç£¬ÈôÏß¶ÎMFµÄÖеãEÔÚÅ×ÎïÏßCÉÏ£¬Ôò¡÷MNFµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\sqrt{2}$C£®$\frac{{3\sqrt{2}}}{2}$D£®$3\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¡°a=$\frac{1}{18}$¡°ÊÇ¡°¶ÔÈÎÒâµÄÕýÊýx£¬x+$\frac{a}{2x}$¡Ý$\frac{1}{3}$¡°µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸