精英家教网 > 高中数学 > 题目详情
9.函数f(x)=axm(1-2x)n(a>0)在区间[0,$\frac{1}{2}$]上的图象如图所示,则m、n的值可能是(  )
A.m=1,n=1B.m=1,n=2C.m=2,n=3D.m=3,n=1

分析 由图得,原函数的极大值点约为0.375.把选项代入验证看哪个对应的极大值点符合要求即可得出答案.

解答 解:由于本题是选择题,可以用代入法来作,
由图得,原函数的极大值点约为0.375.
当m=1,n=1时,f(x)=ax(1-2x)=-2a(x-$\frac{1}{4}$)2+$\frac{a}{8}$.在x=$\frac{1}{4}$处有极大值,故A错误;
当m=1,n=2时,f(x)=axm(1-2x)n=ax(1-2x)2=a(4x3-4x2+x),
所以f′(x)=a(2x-1)(6x-1),a>0,令f′(x)=0⇒x=$\frac{1}{2}$,x=$\frac{1}{6}$,
即函数在x=$\frac{1}{6}$处有极大值,故B错误;
当m=2,n=3时,f(x)=axm(1-2x)n=ax2(1-2x)3,有f'(x)=a(1-2x)2(2x-10x2),
令f′(x)=0⇒x=0,x=$\frac{1}{5}$,x=$\frac{1}{2}$,即函数在x=$\frac{1}{5}$处有极大值,故C错误;
当m=3,n=1时,f(x)=axm(1-2x)n=ax3(1-2x)=a(x3-2x4),
有f′(x)=ax2(3-8x),令f′(x)=0,⇒x=0,x=$\frac{3}{8}$,即函数在x=$\frac{3}{8}$处有极大值,故D正确.
故选:D.

点评 本题主要考查函数的最值(极值)点与导函数之间的关系.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数f(x)=ax3+3x2+2,若f′(-1)=6,则a的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.D为△ABC的边BC的中点,E为AD中点,若AD=a,则($\overrightarrow{EB}$+$\overrightarrow{EC}$)•$\overrightarrow{EA}$=(  )
A.-$\frac{{a}^{2}}{2}$B.$\frac{{a}^{2}}{2}$C.-2a2D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$,表示的平面区域为D,若存在点P(x0,y0)∈D,满足x0-2y0=2,则实数m的取值范围是m<-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x、y满足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x≥1}\\{x-2y+3≤0}\end{array}\right.$,则$\frac{y}{x}$的取值范围为($\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事,多家央企为了配合国家战略支持雄安新区建设,纷纷申请在新区建立分公司,若规定每家央企只能在雄县、容城、安新3个片区中的一个片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不影响且必须在其中一个片区建立分公司,向雄安新区申请建立分公司的任意4家央企中:
(1)求恰有2家央企申请在“雄县”片区建立分公司的概率;
(2)用X表示这4家央企中在“雄县”片区建立分公司的个数,用Y表示在“容城”或“安新”片区建立分公司的个数,记ξ=|X-Y|,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.三棱锥P-ABC中,底面ABC为等边三角形,O为△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D为AP上一点,且AD=2DP.
(I)求证:DO∥平面PBC;
(II)求证:AC⊥平面OBD;
(III)求三棱锥B-PDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等比数列{an}满足a1+a3=10,a2+a4=5,则a5=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数$\overline{z}$为(  )
A.2+iB.2-iC.5-iD.5+i

查看答案和解析>>

同步练习册答案