精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2-b2=3actanB,则角B的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

分析 根据题意,利用余弦定理化简a2+c2-b2=3actanB,再由同角的三角函数关系,即可求出sinB的值,再根据B∈(0,π)求得B的值.

解答 解:△ABC中,a2+c2-b2=3actanB,
由余弦定理得2accosB=3actanB,
∴2cosB•cosB=3sinB,
即2(1-sin2B)=3sinB,
整理得2sin2B+3sinB-2=0,
解得sinB=$\frac{1}{2}$或sinB=-2(不合题意,舍去);
又B∈(0,π),
∴B的值为$\frac{π}{6}$或$\frac{5π}{6}$.
故选:C.

点评 本题考查了余弦定理以及同角三角函数关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是线段AB的中点.
(Ⅰ)求证:D1M∥面B1BCC1
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{$\frac{{a}_{n}}{2n-1}$}的前n项和为Sn,若Sn+$\frac{{4}^{n+1}}{{5}^{n}}$=4.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=ax3+3x2+2,若f′(-1)=6,则a的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在(2x2-$\frac{1}{\sqrt{x}}$)6的展开式中,含x7的项的系数是240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点P(1,1)且倾斜角为45°的直线被圆(x-2)2+(y-1)2=2所截的弦长是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱长为4的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM和CN所成的角的余弦值是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{10}}{10}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事,多家央企为了配合国家战略支持雄安新区建设,纷纷申请在新区建立分公司,若规定每家央企只能在雄县、容城、安新3个片区中的一个片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不影响且必须在其中一个片区建立分公司,向雄安新区申请建立分公司的任意4家央企中:
(1)求恰有2家央企申请在“雄县”片区建立分公司的概率;
(2)用X表示这4家央企中在“雄县”片区建立分公司的个数,用Y表示在“容城”或“安新”片区建立分公司的个数,记ξ=|X-Y|,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案