精英家教网 > 高中数学 > 题目详情
16.过点P(1,1)且倾斜角为45°的直线被圆(x-2)2+(y-1)2=2所截的弦长是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

分析 先求出过点P(1,1)且倾斜角为45°的直线方程,再求出圆心C(2,1)到直线x-y=0的距离d,再由直线被圆(x-2)2+(y-1)2=2所截的弦长|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$,能求出结果.

解答 解:过点P(1,1)且倾斜角为45°的直线方程为:
y-1=tan45°(x-1),即x-y=0,
圆(x-2)2+(y-1)2=2的圆心C(2,1),半径r=$\sqrt{2}$,
圆心C(2,1)到直线x-y=0的距离d=$\frac{|2-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴直线被圆(x-2)2+(y-1)2=2所截的弦长:
|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{2-\frac{1}{2}}$=$\sqrt{6}$.
故选:C.

点评 本题考查直线被圆截得的弦长的求法,考查圆、直线方程、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.复数(a-i)(1-i)(a∈R)的实部与虚部相等,则实数a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在四边形ABCD中,若$\overrightarrow{DC}=\frac{2}{5}\overrightarrow{AB}$,且|$\overrightarrow{AD}|=|\overrightarrow{BC}|$,则这个四边形是(  )
A.平行四边形B.菱形C.矩形D.等腰梯形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2-b2=3actanB,则角B的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设F(x)=$\frac{f(x)}{g(x)}$是(-∞,0)∪(0,+∞)上的偶函数,当x<0时,f'(x)g(x)-f(x)g'(x)>0,且f(2)=0,则不等式F(x)<0的解集是(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足a1=$\frac{1}{2}$,an+1=an2+an(n∈N*),则$\sum_{n=1}^{2018}$$\frac{1}{{a}_{n}+1}$的整数部分是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以下茎叶图记录的是某同学高三5次模拟考试数学得分:

则这5次得分的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(2sin(x+$\frac{π}{6}$),-2),$\overrightarrow{b}$=(2,$\frac{\sqrt{3}}{2}$-2cosx).
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求sin(x+$\frac{4π}{3}$)的值;
(Ⅱ)设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若x∈[0,π],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“局部奇函数”,已知f(x)=4x-m2x+1+m-3为定义R上的“局部奇函数”,则实数m的取值范围是(  )
A.$[1-\sqrt{3},+∞)$B.[-2,+∞)C.$[-2,2\sqrt{2}]$D.$[-2,1+\sqrt{3}]$

查看答案和解析>>

同步练习册答案