精英家教网 > 高中数学 > 题目详情
14.正四面体ABCD中,M是棱AD的中点,O是点A在底面BCD内的射影,则异面直线BM与AO所成角的余弦值为(  )
A.$\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{5}$

分析 取BC中点E,DC中点F,连结DE、BF,则由题意得DE∩BF=O,取OD中点N,连结MN,则MN∥AO,从而∠BMN是异面直线BM与AO所成角(或所成角的补角),由此能求出异面直线BM与AO所成角的余弦值.

解答 解:取BC中点E,DC中点F,连结DE、BF,则由题意得DE∩BF=O,
取OD中点N,连结MN,则MN∥AO,
∴∠BMN是异面直线BM与AO所成角(或所成角的补角),
设正四面体ABCD的棱长为2,由BM=DE=$\sqrt{4-1}=\sqrt{3}$,OD=$\frac{2}{3}DE=\frac{2\sqrt{3}}{3}$,
∴AO=$\sqrt{4-\frac{4}{3}}$=$\frac{2\sqrt{2}}{\sqrt{3}}$,∴MN=$\frac{1}{2}AO=\frac{\sqrt{2}}{\sqrt{3}}$,
∵O是点A在底面BCD内的射影,MN∥AO,∴MN⊥平面BCD,
∴cos∠BMN=$\frac{MN}{BM}$=$\frac{\frac{\sqrt{2}}{\sqrt{3}}}{\sqrt{3}}$=$\frac{\sqrt{2}}{3}$,
∴异面直线BM与AO所成角的余弦值为$\frac{\sqrt{2}}{3}$.
故选:B.

点评 本题考查异面直线所成角的余弦值的求法,考查正四面体、线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设i是虚数单位,若复数$a+\frac{2i}{1-i}$(a∈R)是纯虚数,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为(  )
A.10B.12C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知(5x2-$\frac{1}{x}$)n的二项展开式系数和为1024,则展开式中含x项的系数是(  )
A.-250B.250C.-25D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若x•f'(x)+f(x)=ex(x-1),且f(2)=0,则不等式f(x)<0的解集为(  )
A.(0,1)B.(0,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,第二象限的点P(x0,y0)满足bx0+ay0=0,若|PF1|:|PF2|:|F1F2|=1:$\sqrt{3}$:2,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数(a-i)(1-i)(a∈R)的实部与虚部相等,则实数a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知各项均为正数的等比数列{an}的前n项和为Sn,且S3=14,a3=8,则a6=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2-b2=3actanB,则角B的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案