| A. | $\sqrt{5}$ | B. | 4 | C. | $\sqrt{3}$ | D. | 2 |
分析 由题意可知∠PF1F2=$\frac{π}{3}$,∠PF2F1=$\frac{π}{6}$,根据直线的斜率公式,求得x0=-$\frac{c}{2}$,y0=$\frac{\sqrt{3}}{2}$c,代入bx0+ay0=0,求得a和b的关系,根据双曲线的离心率公式,即可求得双曲线的离心率.
解答
解:由|PF1|:|PF2|:|F1F2|=1:$\sqrt{3}$:2,则PF1⊥PF2,
则∠PF1F2=$\frac{π}{3}$,∠PF2F1=$\frac{π}{6}$,
由${k}_{P{F}_{1}}$=$\frac{{y}_{0}}{{x}_{0}+c}$=tan∠PF1F2=$\sqrt{3}$,${k}_{P{F}_{2}}$=$\frac{{y}_{0}}{{x}_{0}-c}$=-tan∠PF2F1=-$\frac{\sqrt{3}}{3}$,
∴$\frac{{x}_{0}-c}{{x}_{0}+c}$=-3,解得:x0=-$\frac{c}{2}$,y0=$\frac{\sqrt{3}}{2}$c,
由P(x0,y0)满足bx0+ay0=0,即b(-$\frac{c}{2}$)+a×$\frac{\sqrt{3}}{2}$c=0,整理得:b=$\sqrt{3}$c,
双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=2,
故双曲线C的离心率2,
故选D.
点评 本题考查双曲线的简单几何性质,直线的斜率公式,考查计算能力,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $\frac{10}{3}$ | C. | 6 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{6}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com