精英家教网 > 高中数学 > 题目详情
15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-2≤0}\\{x+y-2≥0}\end{array}\right.$,则z=3x-y的最大值为(  )
A.-2B.$\frac{10}{3}$C.6D.14

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-2≤0}\\{x+y-2≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y-2=0}\end{array}\right.$,解得A(4,6),
化目标函数z=3x-y为y=3x-z,
由图可知,当直线y=3x-z过A时,直线在y轴上的截距最小,z有最大值为6.
故选:C.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知A、F分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点、右焦点,点P为椭圆C上一动点,当PF⊥x轴时,AF=2PF.
(1)求椭圆C的离心率;
(2)若椭圆C存在点Q,使得四边形AOPQ是平行四边形(点P在第一象限),求直线AP与OQ的斜率之积;
(3)记圆O:x2+y2=$\frac{ab}{{a}^{2}+{b}^{2}}$为椭圆C的“关联圆”.若b=$\sqrt{3}$,过点P作椭圆C的“关联圆”的两条切线,切点为M、N,直线MN的横、纵截距分别为m、n,求证:$\frac{3}{{m}^{2}}$+$\frac{4}{{n}^{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$+ln($\sqrt{{x}^{2}+1}$+x)+${∫}_{0}^{x}$cos xdx在区间[-k,k](k>0)上的值域为[m,n],则m+n的值是(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足a1+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n-1}}$=n,bn=nlog3a4n+1,n∈N*
(Ⅰ)设数列{an}、{bn}的通项;
(Ⅱ)设cn=$\frac{1}{{b}_{n}-1}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设i是虚数单位,若复数$a+\frac{2i}{1-i}$(a∈R)是纯虚数,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函数g(x)=f(x)+2x-a有三个不同的零点,则实数a的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=$\frac{1}{256},{a_{n+1}}=2\sqrt{a_n}$,若bn=log2an-2,则b1•b2•…•bn的最大值为$\frac{625}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=(  )
A.1B.513C.512D.511

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,第二象限的点P(x0,y0)满足bx0+ay0=0,若|PF1|:|PF2|:|F1F2|=1:$\sqrt{3}$:2,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案