精英家教网 > 高中数学 > 题目详情
4.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=(  )
A.1B.513C.512D.511

分析 根据二项展开式,可知x的系数,奇次方为负,偶次方为正,所以|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2+…-a9,从而可利用赋值法求解.

解答 解:由于x的系数,奇次方为负,偶次方为正,所以|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2+…-a9
故令x=-1,得a0-a1+a2+…-a9=29
令x=0,则a0=1
∴|a1|+|a2|+…+|a9|=29-1=512-1=511
故选:D

点评 本题的考点是二项式定理的应用,主要考查二项式系数和问题,关键是将绝对值符号去掉,利用赋值法求系数和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题,济南市创新性的采用“公建民营”的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理,计划从中抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有5号,23号和29号,则下面号码中可能被抽到的号码是(  )
A.9B.12C.15D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-2≤0}\\{x+y-2≥0}\end{array}\right.$,则z=3x-y的最大值为(  )
A.-2B.$\frac{10}{3}$C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲乙两人下棋,已知两人下成和棋的概率为$\frac{1}{2}$,甲赢棋的概率为$\frac{1}{3}$,则甲输棋的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知图1中,四边形 ABCD是等腰梯形,AB∥CD,EF∥CD,DM⊥AB于M、交EF于点N,DN=3$\sqrt{3}$,MN=$\sqrt{3}$,现将梯形ABCD沿EF折起,记折起后C、D为C'、D'且使D'M=2$\sqrt{6}$,如图2示.
(Ⅰ)证明:D'M⊥平面ABFE;,
(Ⅱ)若图1中,∠A=60°,求点M到平面AED'的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|0<x<2},B={x|x2<1},则A∪B=(  )
A.(0,1)B.(-1,2)C.(-1,1)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥平面ABCD,PA=2,E,F分别为BC,PE的中点.
(1)求证:AF⊥平面PED;
(2)求点C到平面PED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=ln(x+e)3(x>0)的值域为(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=4$\sqrt{5}$.
(Ⅰ)证明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B-PA-D的余弦值.

查看答案和解析>>

同步练习册答案