精英家教网 > 高中数学 > 题目详情
16.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥平面ABCD,PA=2,E,F分别为BC,PE的中点.
(1)求证:AF⊥平面PED;
(2)求点C到平面PED的距离.

分析 (1)连接AE,推导出AE⊥ED,PA⊥ED,从而ED⊥平面PAE,进而ED⊥AF,再求出AF⊥PE,由此能证明AF⊥平面PED.
(2)设点C到平面PED的距离为d,由VC-PED=VP-ECD,能求出点C到平面PED的距离.

解答 证明:(1)连接AE,在平行四边形ABCD中,
BC=2AB=4,∠ABC=60°,
∴AE=2,$ED=2\sqrt{3}$,从而有AE2+ED2=AD2
∴AE⊥ED.
∵PA⊥平面ABCD,ED?平面ABCD,∴PA⊥ED,
又∵PA∩AE=A,∴ED⊥平面PAE,AF?平面PAE
从而有ED⊥AF.
又∵PA=AE=2,F为PE的中点,
∴AF⊥PE,又∵PE∩ED=E,
∴AF⊥平面PED.
解:(2)设点C到平面PED的距离为d,
在Rt△PED中,$PE=2\sqrt{2}$,$ED=2\sqrt{3}$,∴${S_{△PED}}=2\sqrt{6}$.
在△ECD中,EC=CD=2,∠ECD=120°,∴${S_{△ECD}}=\sqrt{3}$.
由VC-PED=VP-ECD得,$\frac{1}{3}{S_{△PED}}•d=\frac{1}{3}{S_{△ECD}}•PA$,
∴$d=\frac{{{S_{△ECD}}•PA}}{{{S_{△PED}}}}=\frac{{\sqrt{2}}}{2}$.
所以点C到平面PED的距离为$\frac{{\sqrt{2}}}{2}$.

点评 本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$+ln($\sqrt{{x}^{2}+1}$+x)+${∫}_{0}^{x}$cos xdx在区间[-k,k](k>0)上的值域为[m,n],则m+n的值是(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=$\frac{1}{256},{a_{n+1}}=2\sqrt{a_n}$,若bn=log2an-2,则b1•b2•…•bn的最大值为$\frac{625}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(1-x)9=a0+a1x+a2x2+…+a9x9,则|a1|+|a2|+|a3|+…+|a9|=(  )
A.1B.513C.512D.511

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为(  )
A.10B.12C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=axln(x+1)+x+1(x>-1,a∈R).
(1)若$a=\frac{1}{e}$,求函数f(x)的单调区间;
(2)当x≥0时,不等式f(x)≤ex恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知(5x2-$\frac{1}{x}$)n的二项展开式系数和为1024,则展开式中含x项的系数是(  )
A.-250B.250C.-25D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,第二象限的点P(x0,y0)满足bx0+ay0=0,若|PF1|:|PF2|:|F1F2|=1:$\sqrt{3}$:2,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(4,m),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{10}$.

查看答案和解析>>

同步练习册答案