精英家教网 > 高中数学 > 题目详情
11.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为(  )
A.100πcm3B.$\frac{500π}{3}c{m^3}$C.400πcm3D.$\frac{4000π}{3}c{m^3}$

分析 如图所示,该几何体为四棱锥P-ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.

解答 解:如图所示,该几何体为四棱锥P-ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.
AB=6,AD=2$\sqrt{7}$,PD=6.
则该阳马的外接球的直径为PB=$\sqrt{P{D}^{2}+D{B}^{2}}$
=$\sqrt{P{D}^{2}+A{D}^{2}+A{B}^{2}}$=$\sqrt{{6}^{2}+{6}^{2}+(2\sqrt{7})^{2}}$=10.
∴该阳马的外接球的体积=$\frac{4π×{5}^{3}}{3}$=$\frac{500π}{3}$cm3
故选:B.

点评 本题考查了四棱锥的三视图、长方体的性质、球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.参数方程$\left\{\begin{array}{l}{x=t-1}\\{y=t+2}\end{array}\right.$(t为参数)的曲线与坐标轴的交点坐标为(  )
A.(1,0),(0,-2)B.(0,1),(-1,0)C.(0,-1),(1,0)D.(0,3),(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若命题“存在x0∈R,使x02+2x0+m≤0”是假命题,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)=|3x-2|+|x-2|≤8;
(Ⅱ)对任意的x,f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=2,an+1=$\frac{2}{{a}_{n}+1}$,设bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$n∈N*
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前n项的和为Sn,求证:bnSn≤$\frac{1}{16}$(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{3π}{2}$C.$\frac{4π}{3}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0<α<π)$,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P($\frac{1}{2}$,0),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,抛物线C:x2=2py(p>0)的准线为y=-1,取过焦点F且平行于x轴的直线与抛物线交于不同的两点P1,P2,过P1,P2作圆心为Q的圆,使抛物线上其余点均在圆外,且∠P1QP2=90°.
(1)求抛物线C和圆Q的方程;
2)过点F作直线l与抛物线C和圆Q依次交于M,A,B,N,求|MN|•|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.f(x)是定义在R上的偶函数,其图象关于直线x=2对称,当x∈[-2,2]时,f(x)=-x2+3,则f(-3)=2.

查看答案和解析>>

同步练习册答案