精英家教网 > 高中数学 > 题目详情
3.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0<α<π)$,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P($\frac{1}{2}$,0),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

分析 (1)将x=ρcosθ,y=ρsinθ代入,即可求得曲线C的直角坐标方程;
(2)当α=$\frac{π}{3}$时,求得直线l的参数方程,代入抛物线方程,利用韦达定理及|PA|+|PB|=$|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}$,即可求得|PA|+|PB|的值.

解答 解:(1)由$ρ=\frac{2cosθ}{{{{sin}^2}θ}}得{ρ^2}{sin^2}θ=2ρcosθ$,
将x=ρcosθ,y=ρsinθ代入,整理得:y2=2x,
所以曲线C的直角坐标方程为y2=2x;…(5分)
(2)因为$α=\frac{π}{3}$,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t为参数)$,代入y2=2x,得3t2-4t-4=0,
设A,B两点对应的参数分别为t1,t2,则${t_1}+{t_2}=\frac{4}{3}$,${t_1}{t_2}=-\frac{4}{3}$
∴|PA|+|PB|=$|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}$=$\frac{8}{3}$,
|PA|+|PB|的值$\frac{8}{3}$.…(10分)

点评 本题考查抛物线的极坐标方程,直线的参数方程,直线与抛物线的位置关系,考查韦达定理及弦长公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ksin(kx+$\frac{π}{6}$)(k∈N*)的图象过点(π,1).
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的可导函数f(x)的导函数为f′(x),若对于任意实数x,有f(x)>f′(x),且y=f(x)-2为奇函数,则不等式f(x)<2ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,e2D.(e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的体积为(  )
A.100πcm3B.$\frac{500π}{3}c{m^3}$C.400πcm3D.$\frac{4000π}{3}c{m^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,则$\overrightarrow a$•$\overrightarrow b$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序,若输出y的值为1,则输入x的值为(  )
A.0B.0或-1C.±1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a0+a8=(  )
A.664B.844C.968D.1204

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+1(a∈R),f(ln(log25))=5,则f(ln(log52))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z=1-i,则$\frac{-3+4i}{z+1}$=(  )
A.-2+iB.2+iC.-1+2iD.1+2i

查看答案和解析>>

同步练习册答案