精英家教网 > 高中数学 > 题目详情
14.已知定义在R上的可导函数f(x)的导函数为f′(x),若对于任意实数x,有f(x)>f′(x),且y=f(x)-2为奇函数,则不等式f(x)<2ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,e2D.(e2,+∞)

分析 根据条件构造函数令g(x)=$\frac{f(x)}{{e}^{x}}$,由求导公式和法则求出g′(x),根据条件判断出g′(x)的符号,得到函数g(x)的单调性,再由奇函数的结论:f(0)=0求出g(0)的值,将不等式进行转化后,利用g(x)的单调性可求出不等式的解集.

解答 解:由题意令g(x)=$\frac{f(x)}{{e}^{x}}$,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f(x)>f′(x),
∴g′(x)<0,
即g(x)在R上是单调递减函数,
∵y=f(x)-2为奇函数,
∴f(0)-2=0,即f(0)=2,g(0)=2,
则不等式f(x)<2ex等价为$\frac{f(x)}{{e}^{x}}$<2=g(0),
即g(x)<g(0),
解得x>0,
∴不等式的解集为(0,+∞),
故选:B.

点评 本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.某程序框图如图所示,若该程序运行后输出的值是$\frac{7}{4}$,则a=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A,B分别是射线CM,CM(不含端点C)上运动,在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若∠MCN=$\frac{2π}{3}$,a,b,c依次成等差数列,且公差为2,求c的值;
(2)若∠MCN=$\frac{π}{3},c=\sqrt{3}$,∠ABC=θ,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若命题“存在x0∈R,使x02+2x0+m≤0”是假命题,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.画边长为2的正方体ABCD-A1B1C1D1的三视图中的正视图时,若以△A1C1D所在的平面为投影面,则得到的正视图面积为(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)=|3x-2|+|x-2|≤8;
(Ⅱ)对任意的x,f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=2,an+1=$\frac{2}{{a}_{n}+1}$,设bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$n∈N*
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前n项的和为Sn,求证:bnSn≤$\frac{1}{16}$(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0<α<π)$,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P($\frac{1}{2}$,0),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下命题:
(1)在回归直线方程$\widehat{y}$=0.5x-85中,变量x=200时,变量$\widehat{y}$的值一定是15;
(2)根据2×2列联表中的数据计算得出X2=7.469,而P(X2>6.635)≈0.01,则有99%的把握认为两个事件有关;
(3)若不等式|x+1|-|x-1|>k有解,则k的取值范围是k≤-2;
(4)随机变量ζ满足正态分布N(0,1),若P(|ξ|≤1.96)=0.950,则P(ξ<-1.96)=0.05.
其中正确的命题是(2)(将正确的序号都填上)

查看答案和解析>>

同步练习册答案