| A. | -5 | B. | -1 | C. | 3 | D. | 4 |
分析 根据题意,对函数f(x)变形可得$f(x)=\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}+1=\frac{2x+asinx}{{{x^2}+1}}+2$;令$g(x)=f(x)-2=\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$,分析可得g(x)为奇函数,又由ln(log52)=-ln(log25),结合函数奇偶性的性质即可得答案.
解答 解:根据题意,$f(x)=\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}+1=\frac{2x+asinx}{{{x^2}+1}}+2$;
令$g(x)=f(x)-2=\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$,则g(x)为奇函数,
g(ln(log25))=f(ln(log25))-2=3,g(ln(log52))=g(-ln(log25))=-3,
f(ln(log52))=g(ln(log52))+2=-3+2=-1,
即f(ln(log52))=-1;
故选:B.
点评 本题考查函数奇偶性的性质,涉及对数的运算性质,关键是构造函数g(x)=f(x)-2,并分析g(x)的奇偶性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$ | B. | -$\frac{1}{5}$i | C. | $\frac{1}{5}$ | D. | $\frac{1}{5}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com