精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3-ax2+3x+6
(Ⅰ)若f(x)在[-$\frac{1}{3}$,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)若x=3是f(x)的一个极值点,求f(x)在[0,a]上的最值.

分析 (Ⅰ)求出导函数,利用$f'(x)在[-\frac{1}{3},+∞]$上恒有f'(x)≥0,转化为$3{x^2}-2ax+3≥0在[-\frac{1}{3},+∞)$上恒成立,①△≤0,②$\left\{\begin{array}{l}△>0\\ \frac{a}{3}<-\frac{1}{3}\\ f'(-\frac{1}{3})≥0\end{array}\right.$,求解即可.
(Ⅱ)依题意,f'(3)=0,求出a,然后求解极值点,判断导函数的符号,然后求解最值.

解答 解:(Ⅰ)f'(x)=3x2-2ax+3∵$f(x)在[-\frac{1}{3},+∞]$上是增函数,
∴$f'(x)在[-\frac{1}{3},+∞]$上恒有f'(x)≥0,
即$3{x^2}-2ax+3≥0在[-\frac{1}{3},+∞)$上恒成立…(2分)
则有
①△≤0,解得-3≤a≤3…(4分)
②$\left\{\begin{array}{l}△>0\\ \frac{a}{3}<-\frac{1}{3}\\ f'(-\frac{1}{3})≥0\end{array}\right.$
解得-5≤a<-3
综上-5≤a≤3…(6分)
(Ⅱ)依题意,f'(3)=0,
即3•9-6a+3=0∴a=5,∴f(x)=x3-5x2+3x+6…(8分)
令f'(x)=3x2-10x-3=0.
得${x_1}=\frac{1}{3},{x_2}=3$,则
当x变化时,f'(x),f(x)的变化情况如下表:

x0(0,$\frac{1}{3}$)$\frac{1}{3}$($\frac{1}{3}$,3)3(3,5)5
f'(x)+0-0+
f(x)6$6\frac{13}{27}$-321
…(11分)
∴f(x)在[0,5]上的最大值是f(5)=21,最小值是f(3)=-3.…(12分)

点评 本题考查函数的最值的求法,函数的极值以及函数的单调性的判断,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+1(a∈R),f(ln(log25))=5,则f(ln(log52))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z=1-i,则$\frac{-3+4i}{z+1}$=(  )
A.-2+iB.2+iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,A=2B.
(I )若sinB=$\frac{\sqrt{5}}{5}$,求cosC的值;
(II)若C为钝角,求$\frac{c}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且C1E⊥平面BDE.
(I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某省组织了一次高考模拟考试,该省教育部门抽取了1000名考生的数学考试成绩,并绘制成频率分布直方图如图所示.
(Ⅰ)求样本中数学成绩在95分以上(含95分)的学生人数;
(Ⅱ)已知本次模拟考试全省考生的数学成绩X~N(μ,σ2),其中μ近似为样本的平均数,σ2近似为样本方差,试估计该省的所有考生中数学成绩介于100~138.2分的概率;
(Ⅲ)以频率估计概率,若从该省所有考生中随机抽取4人,记这4人中成绩在[105,125)内的人数为X,求X的分布列及数学期望.
参考数据:$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B=$\frac{π}{4}$,△ABC的面积为9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正项等比数列{an}中,a1008a1010=$\frac{1}{100}$,则lga1+lga2+…+lga2017=(  )
A.-2016B.-2017C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.幂函数f(x)=${x^{{m^2}+5m+4}}({m∈Z})$是偶函数且在(0,+∞)上单调递减,则m的值为-3或-2.

查看答案和解析>>

同步练习册答案