精英家教网 > 高中数学 > 题目详情
15.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a0+a8=(  )
A.664B.844C.968D.1204

分析 利用二项式定理将等式左边化为1-x为一项的二项式,对1-x赋值求系数.

解答 解:由已知已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$=[2-(1-x)]10,则a0=210=1024,a8=${C}_{10}^{8}={C}_{10}^{2}$×22=180,所以则a0+a8=1204;
故选D.

点评 本题考查了二项式定理的运用;熟记定理并且正确变形是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知A,B分别是射线CM,CM(不含端点C)上运动,在△ABC中,角A,B,C所对的边分别为a,b,c.
(1)若∠MCN=$\frac{2π}{3}$,a,b,c依次成等差数列,且公差为2,求c的值;
(2)若∠MCN=$\frac{π}{3},c=\sqrt{3}$,∠ABC=θ,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=2,an+1=$\frac{2}{{a}_{n}+1}$,设bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$n∈N*
(1)求数列{bn}的通项公式;
(2)设数列{bn}的前n项的和为Sn,求证:bnSn≤$\frac{1}{16}$(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0<α<π)$,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$
(1)求曲线C的直角坐标方程;
(2)设直线A与曲线C相交于A,B两点,已知定点P($\frac{1}{2}$,0),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是(  )
A.16B.32C.$\frac{64}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,抛物线C:x2=2py(p>0)的准线为y=-1,取过焦点F且平行于x轴的直线与抛物线交于不同的两点P1,P2,过P1,P2作圆心为Q的圆,使抛物线上其余点均在圆外,且∠P1QP2=90°.
(1)求抛物线C和圆Q的方程;
2)过点F作直线l与抛物线C和圆Q依次交于M,A,B,N,求|MN|•|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义域为R的函数f(x)满足f(x+3)=2f(x),当x∈[-1,2)时,f(x)=$\left\{{\begin{array}{l}{{x^2}+x,x∈[-1,0)}\\{-{{(\frac{1}{2})}^{|x-1|}},x∈[0,2)}\end{array}}$.
若存在x∈[-4,-1),使得不等式t2-3t≥4f(x)成立,则实数t的取值范围是(-∞,1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下命题:
(1)在回归直线方程$\widehat{y}$=0.5x-85中,变量x=200时,变量$\widehat{y}$的值一定是15;
(2)根据2×2列联表中的数据计算得出X2=7.469,而P(X2>6.635)≈0.01,则有99%的把握认为两个事件有关;
(3)若不等式|x+1|-|x-1|>k有解,则k的取值范围是k≤-2;
(4)随机变量ζ满足正态分布N(0,1),若P(|ξ|≤1.96)=0.950,则P(ξ<-1.96)=0.05.
其中正确的命题是(2)(将正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{x-1}{x+1}$(x>0)的值域是(-1,1).

查看答案和解析>>

同步练习册答案