精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
m
3
x3-
1
2
x2
+n(m≠0).
(I)若f(x)在x=1处取得极小值0,求实数m,n的值;
(Ⅱ)求函数f(x)的单调区间.
(I)函数的导数为f'(x)=mx2-x,若f(x)在x=1处取得极小值0,则f'(1)=m-1=0,解得m=1,
且f(1)=0.所以f(x)=
1
3
x3-
1
2
x2+n
,所以由f(1)=0,解得n=
1
6

(Ⅱ)因为函数的导数为f'(x)=mx2-x=x(mx-1)=mx(x-
1
m
)
,对应方程的两个根为0,
1
m

若m>0,则由f'(x)>0,解得x
1
m
或x<0,此时函数单调递增.由f'(x)<0,解得0<x<
1
m
,此时函数单调递减.
若m<0,则由f'(x)>0,解得
1
m
<x<0,此时函数单调递增.x<0,由f'(x)<0,解得x>0或x<
1
m
,此时函数单调递减.
综上若m>0,函数的增区间为(-∞,0)和(
1
m
,+∞
),单调减区间为(0,
1
m
).
若m<0,函数的增区间为(
1
m
,0).单调减区间为(-∞,
1
m
)和(0,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案