精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,在△ABC中,点D是边AB的中点,则向量
DC
=(  )
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC
分析:由已知中点D是边AB的中点,我们易得到
CD
=
1
2
(
CA
+
CB
)
,再由向量加法的三角形法则,
BA
=
BC
+
CA
我们易得到结论.
解答:解:∵点D是边AB的中点,
CD
=
1
2
(
CA
+
CB
)

DC
=-
1
2
(
CA
+
CB
)
=-
1
2
BA
+
BC

故选D
点评:本题考查的知识点是向量的三角形法则,要将未知向量用已知向量表示,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC边上的中线BD=
5
,求:
(1)BC的长度;
(2)sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC内作射线AM交BC于点M,则BM<1的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,则
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC内作射线AM交BC于点M,求BM<1的概率.

查看答案和解析>>

同步练习册答案