精英家教网 > 高中数学 > 题目详情
14.在△ABC中,D是边BC的中点,$\overrightarrow{AD}$=t($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),且$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$,则△ABC的形状是(  )
A.等边三角形B.直角三角形
C.等腰(非等边)三角形D.三边均不相等的三角形

分析 由题意可知D在∠BAC的平分线上,故AB=AC,由夹角公式得到∠BAC=$\frac{π}{3}$,问题得以解决.

解答 解:由$\overrightarrow{AD}$=t($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)知D在∠BAC的平分线上,故AB=AC,
由$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$=$\frac{1}{2}$=cos∠BAC,故∠BAC=$\frac{π}{3}$,
故△ABC为等边三角形,
故选:A.

点评 本题考查了向量的数量积的运算和向量的夹角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,右焦点F(1,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P在椭圆C上,且在第一象限内,直线PQ与圆O:x2+y2=b2相切于点M,且OP⊥OQ,求点Q的纵坐标t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一船沿北偏西45°方向航行,看见正东方向有两个灯塔A,B,AB=10海里,航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船的速度是每小时(  )
A.5海里B.5$\sqrt{2}$海里C.10海里D.10$\sqrt{2}$海里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(4$\sqrt{x}$+$\frac{1}{x}}$)n的展开式中各项系数之和为125,则展开式的常数项为48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC、BD,设内层椭圆方程$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),若直线AC与BD的斜率之积为-$\frac{1}{4}$,则椭圆的离心率为$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两个不同的平面α,β,若l∥α,则”l⊥β”是”α⊥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面四边形ABCD是边长为1的正方形,PA=PD,且PA⊥CD.
(1)求证:平面PAD⊥底面ABCD;
(2)设PA=λ,当λ为何值时异面直线PA与BC所成的角为$\frac{π}{3}$?求并此时棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱)76656
收益y(单位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求预计收益是多少元?
(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201-500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为$\frac{2}{5}$,获二等奖学金的概率均为$\frac{1}{3}$,不获得奖学金的概率均为$\frac{4}{15}$.
(1)在学生甲获得奖学金条件下,求他获得一等奖学金的概率;
(2)已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X的分布列及数学期望
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数,图象关于原点对称的是(  )
A.f(x)=lgxB.f(x)=3xC.f(x)=lg(x+$\sqrt{1+{x}^{2}}$)D.f(x)=x2

查看答案和解析>>

同步练习册答案