3£®Ä³Í¬Ñ§ÔÚÆÚÄ©¸´Ï°Ê±µÃµ½ÁËÏÂÃæ4¸ö½áÂÛ£º
¢Ù¶ÔÓÚÆ½ÃæÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬$\overrightarrow{b}$¡Í$\overrightarrow{c}$£¬Ôò$\overrightarrow{a}$¡Í$\overrightarrow{c}$£»
¢ÚÈôº¯Êýf£¨x£©=x2-2£¨1-a£©x+3ÔÚÇø¼ä[3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª[-2£¬+¡Þ£©£»
¢ÛÈô¼¯ºÏA={¦Á|¦Á=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{4}$£¬k¡ÊZ}£¬B={¦Â|¦Â=k¦Ð+$\frac{¦Ð}{4}$£¬k¡ÊZ}£¬ÔòA=B£®
¢Üº¯Êýy=2xµÄͼÏóÓ뺯Êýy=x2µÄͼÏóÓÐÇÒ½öÓÐ2¸ö¹«¹²µã£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

·ÖÎö ¶ÔÓÚ¢Ù£¬ÔËÓÃÏòÁ¿¹²Ïߣ¬¼´¿ÉÅжϣ»¶ÔÓÚ¢Ú£¬Óɶþ´Îº¯ÊýµÄ¶Ô³ÆÖáºÍÇø¼äµÄ¹ØÏµ£¬½â²»µÈʽ¼´¿ÉÅжϣ»
¶ÔÓÚ¢Û£¬¶Ô¼¯ºÏAÌÖÂÛnÎªÆæÊý»òżÊý£¬¼´¿ÉÅжϣ»¶ÔÓڢܣ¬ÓÉy=2xºÍy=x2µÄͼÏóµÄ½»µãΪ£¨2£¬4£©£¬£¨4£¬16£©£¬ÓÉf£¨x£©=2x-x2£¬ÔËÓú¯ÊýÁãµã´æÔÚ¶¨Àí£¬¼´¿ÉÅжϣ®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬Æ½ÃæÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬$\overrightarrow{b}$¡Í$\overrightarrow{c}$£¬Ôò$\overrightarrow{a}$£¬$\overrightarrow{c}$¿ÉÄܹ²Ïߣ¬¹Ê¢Ù²»¶Ô£»
¶ÔÓÚ¢Ú£¬Èôº¯Êýf£¨x£©=x2-2£¨1-a£©x+3ÔÚÇø¼ä[3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¼´ÓÐ1-a¡Ü3£¬¼´Îªa¡Ý-2£¬¹Ê¢Ú¶Ô£»
¶ÔÓÚ¢Û£¬¼¯ºÏA={¦Á|¦Á=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{4}$£¬k¡ÊZ}={¦Á|¦Á=n¦Ð+$\frac{¦Ð}{4}$»òn¦Ð+$\frac{3¦Ð}{4}$£¬n¡ÊZ}£¬ÔòB?A£¬¹Ê¢Û²»¶Ô£»
¶ÔÓڢܣ¬º¯Êýy=2xµÄͼÏóÓ뺯Êýy=x2µÄͼÏóµÄ½»µãΪ£¨2£¬4£©£¬£¨4£¬16£©£¬µ±x£¼0ʱ£¬ÓÉf£¨x£©=2x-x2£¬
f£¨-1£©=-$\frac{1}{2}$£¼0£¬f£¨0£©=1£¾0£¬ÇÒf£¨x£©ÔÚx£¼0ʱµÝÔö£¬Ôòf£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬
×ÛÉϿɵÃÁ½º¯ÊýµÄͼÏó¹²ÓÐ3¸ö½»µã£¬¹Ê¢Ü²»¶Ô£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿¹²Ïß»ò´¹Ö±µÄÌõ¼þ£¬ÒÔ¼°Á½¼¯ºÏµÄ¹ØÏµµÄÅжϣ¬¿¼²éº¯ÊýµÄͼÏóµÄ½»µãºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓã¬ÊôÓÚ»ù´¡ÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÇø¼ä[2£¬24]ÄÚËæ»úÈ¡³öÁ½¸öÊý£¬ÔòÕâÁ½¸öÊýµÄƽ·½ºÍÒ²ÔÚÇø¼ä[2£¬24]ÄڵĸÅÂÊΪ$\frac{£¨3-\sqrt{5}£©¦Ð}{242}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèµãP£¨x£¬y£©£¬Ôò¡°x=-3ÇÒy=1¡±ÊÇ¡°µãPÔÚÖ±Ïßl£ºx-y+4=0ÉÏ¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÇø¼ä[-1£¬1]ÉÏÈÎÈ¡Á½ÊýsºÍt£¬Ôò¹ØÓÚxµÄ·½³Ìx2+2sx+t=0µÄÁ½¸ù¶¼ÊÇÕýÊýµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{24}$B£®$\frac{1}{12}$C£®$\frac{1}{4}$D£®$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èô½Ç¦ÁµÄÖձ߾­¹ýµãP£¨1£¬-2£©£¬Ôòtan¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$-\frac{{2\sqrt{5}}}{5}$C£®-2D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¶¨ÒåÓòΪ[-1£¬1]ÉÏµÄÆæº¯Êýf£¨x£©Âú×ãf£¨x£©=f£¨x-2£©£¬ÇÒµ±x¡Ê£¨0£¬1£©Ê±£¬f£¨x£©=$\frac{a^x}{a^{2x}+1}$£¨a£¾1£©£®
£¨1£©Çóf£¨1£©µÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨3£©Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¸ø³öÏÂÁк¯Êý£º£¨1£©y=2x£»£¨2£©y=x2£»£¨3£©$y=\frac{1}{x}$£»£¨4£©y=x2+1£»£¨5£©$y=\frac{3}{x^2}$£¬ÆäÖÐÊÇÃݺ¯ÊýµÄÐòºÅΪ£¨¡¡¡¡£©
A£®£¨2£©£¨3£©B£®£¨1£©£¨2£©C£®£¨2£©£¨3£©£¨5£©D£®£¨1£©£¨2£©£¨3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®cos260¡ãcos130¡ã-sin260¡ãsin130¡ã=$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö±Ïߣ¨a-1£©x-y+a=1£¨a¡ÊR£©Ô²x+y2+2x+4y-20=0µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÏàÇÐC£®ÏàÀëD£®ÓëaµÄȡֵÓйØ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸