【题目】在平面直角坐标系
中,点
,
分别是椭圆
的左、右焦点,过点
且与
轴垂直的直线与椭圆交于
,
两点.若
为锐角,则该椭圆的离心率的取值范围是_____
【答案】![]()
【解析】
由题设知F1(﹣c,0),F2(c,0),A(﹣c,
),B(﹣c,
),由△
是锐角三角形,知tan∠AF1 F2<1,所以
1,由此能求出椭圆的离心率e的取值范围.
解:∵点F1、F2分别是椭圆
1(a>b>0)的左、右焦点,
过F1且垂直于x轴的直线与椭圆交于A、B两点,
∴F1(﹣c,0),F2(c,0),A(c,
),B(c,
),
∵△
是锐角三角形,
∴∠AF1 F2<45°,∴tan∠AF1 F2<1,
∴
1,
整理,得b2<2ac,
∴a2﹣c2<2ac,
两边同时除以a2,并整理,得e2+2e﹣1>0,
解得e
1,或e
1,(舍),
∴0<e<1,
∴椭圆的离心率e的取值范围是(
1,1).
故答案为:(
1,1).
科目:高中数学 来源: 题型:
【题目】如图,已知
过点
,圆心C在抛物线
上运动,若MN为
在x轴上截得的弦,设
,
,
当C运动时,
是否变化?证明你的结论.
求
的最大值,并求出取最大值时
值及此时
方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左焦点为F,左顶点为A,已知
,其中O为坐标原点,e为椭圆的离心率.
求椭圆C的方程;
是否存在斜率为
的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线
上找到一点P,在椭圆C上找到一点Q,满足
?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
![]()
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】进入12月以业,在华北地区连续出现两次重污染天气的严峻形势下,我省坚持保民生,保蓝天,各地严格落实机动车限行等一系列“管控令”,某市交通管理部门为了了解市民对“单双号限行”的态度,随机采访了200名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到如下的
列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断能否在犯错误的概率不超过
的前提下认为“对限行的态度与是否拥有私家车有关”;
(2)为了了解限行之后是否对交通拥堵、环境染污起到改善作用,从上述调查的不赞同限行的人员中按是否拥有私家车分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人没有私家车的概率.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com