精英家教网 > 高中数学 > 题目详情
1.不等式$\frac{{{x^2}(x+1)}}{{-{x^2}-5x+6}}$≤0的解集为(  )
A.{x|-6<x≤-1或x>1}B.{x|-6<x≤-1或x=0或x>1}
C.{x|x<-6或-1≤x<1}D.{x|x<-6或-1≤x<1且x≠0}

分析 由题意,不等式等价于$\left\{\begin{array}{l}{{x}^{2}(x+1)(-{x}^{2}-5x+6)≤0}\\{-{x}^{2}-5x+6≠0}\end{array}\right.$,即可得出结论.

解答 解:由题意,不等式等价于$\left\{\begin{array}{l}{{x}^{2}(x+1)(-{x}^{2}-5x+6)≤0}\\{-{x}^{2}-5x+6≠0}\end{array}\right.$,
解得-6<x≤-1或x=0或x>1,
故选:B.

点评 本题考查不等式的解法,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列结论中正确的有①④(写出正确命题的序号)
①命题p:“?x∈R,x2-2≥0”的否定形式为?p:“?x∈R,x2-2<0”;
②“平面向量$\overrightarrow a$与$\overrightarrow b$的夹角是钝角”的充分必要条件是“$\overrightarrow a•\overrightarrow b<0$”;
③命题“若a-b=1,则${a^2}+{b^2}>\frac{1}{2}$”的否命题是真命题;
④在△ABC中,“sinA=sinB”是“△ABC为等腰三角形”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2a=3,3b=8,则ab=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查资料表明,凡是在星期一选A种菜的学生,下星期一会有20%改选B种菜;而选B种菜的学生,下星期一会有30%改选A种菜,用an,bn分别表示在第n个星期的星期一选A种菜和选B种菜的学生人数,若a1=300,则:
(1)求a2的值;
(2)判断数列{an-300}是否常数数列,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2-(a2-a)lnx-x(a<0),且函数f(x)在x=2处取得极值.
(I)求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)求函数f(x)在区间[1,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若矩形ABCD中AB边的长为2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于两平面垂直有下列命题,其中错误的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α与平面β不垂直也不重合,那么平面α内一定存在直线平行于平面β
C.如果平面α⊥平面β,那么平面α内一定存在直线不垂直于平面β
D.如果平面α⊥平面β,那么平面α内的所有直线都垂直于平面β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.学校里开运动会,设全集U为所有参加运动会的学生,
A={x|x是参加一百米跑的学生},
B={x|x是参二百米跑的学生},
C={x|x是参加四百米跑的学生},
学校规定,每个参加上述比赛的同学最多只能参加两项,下列集合运算能说明这项规定的是      (  )
A.(A∪B)∪C=UB.(A∪B)∩C=∅C.(A∩B)∩C=∅D.(A∩B)∪C=C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“若a>1且b>1,则a+b>2且ab>1”的逆否命题是(  )
A.若a+b≤2且ab≤1,则a≤1且b≤1B.若a+b≤2且ab≤1,则a≤1或b≤1
C.若a+b≤2或ab≤1,则a≤1且b≤1D.若a+b≤2或ab≤1,则a≤1或b≤1

查看答案和解析>>

同步练习册答案