分析 (1)由a1=300,得b1=500-300=200,由此能求出a2.
(2)依题意$\left\{{\begin{array}{l}{{a_{n+1}}=\frac{4}{5}{a_n}+\frac{3}{10}{b_n}}\\{{a_n}+{b_n}=500}\end{array}}\right.$,从而${a_{n+1}}=\frac{1}{2}{a_n}+150$,由此能推导出数列{an-300}为常数数列.
解答 解:(1)∵a1=300,∴b1=500-300=200,
∴a2=300×0.8+200×0.3=300.
(2)依题意得,$\left\{{\begin{array}{l}{{a_{n+1}}=\frac{4}{5}{a_n}+\frac{3}{10}{b_n}}\\{{a_n}+{b_n}=500}\end{array}}\right.$,
消去bn得:${a_{n+1}}=\frac{1}{2}{a_n}+150$,
∴${a_{n+1}}-300=\frac{1}{2}({{a_n}-300}),n∈{N_+},{a_1}=300$,
从而an=300.
∴数列{an-300}为常数数列.
点评 本题考查第二项的求法,考查数列是否为常数数列的判断,是中档题,解题时要认真审题,注意挖掘题设中的隐含条件,寻找数量间的等量关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 志 愿 | 学 校 | 专 业 | |
| 第一志愿 | 1 | 第1专业 | 第2专业 |
| 第二志愿 | 2 | 第1专业 | 第2专业 |
| 第三志愿 | 3 | 第1专业 | 第2专业 |
| A. | 43•(A32)3 | B. | 43•(C32)3 | C. | A43•(C32)3 | D. | A43•(A32)3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | f(1)<2f($\frac{π}{6}$)sin1 | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-6<x≤-1或x>1} | B. | {x|-6<x≤-1或x=0或x>1} | ||
| C. | {x|x<-6或-1≤x<1} | D. | {x|x<-6或-1≤x<1且x≠0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\frac{1}{2}$)|x| | B. | y=x2 | C. | y=lnx | D. | y=2-x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com