精英家教网 > 高中数学 > 题目详情
12.已知2a=3,3b=8,则ab=3.

分析 根据对数的定义和换底公式计算即可.

解答 解:2a=3,3b=8,
∴a=log23,b=log38,
∴ab=log23•log38=$\frac{lg3}{lg2}•\frac{3lg2}{lg3}$=3,
故答案为:3.

点评 本题考查了对数的定义和换底公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数y=3sin(x-$\frac{π}{5}$)的图象为C,把C上所有的点纵坐标不变横坐标变为原来的2倍,得到的函数解析式为y=3sin($\frac{1}{2}$x-$\frac{π}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等边△ABC中,D、E分别是CA、CB的中点,以A、B为焦点且过D、E的椭圆和双曲线的离心率分别为e1、e2,则下列关于e1、e2的关系式不正确的是(  )
A.e1+e2=2$\sqrt{3}$B.e1-e2=2C.e1e2=2D.$\frac{e_2}{e_1}>2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下面是高考第一批录取的一份志愿表:
志   愿学    校专   业
第一志愿1第1专业第2专业
第二志愿2第1专业第2专业
第三志愿3第1专业第2专业
现有4所重点院校,每所院校有3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,学校录取是按先一再二最后三志愿的顺序,专业是先录取第一专业,再第二专业的原则.你将有不同的填写方法的种数是(  )
A.43•(A323B.43•(C323C.A43•(C323D.A43•(A323

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=4x2-kx-8在[5,8]上是单调减函数,则k的取值范围是[64,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)计算:cos(-$\frac{17π}{6}$);
(Ⅱ)已知tanα=2,求$\frac{3sinα-cosα}{2cosα+sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出以下四个说法:
①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;
③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=$\frac{1}{2}$;
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.
其中正确的说法是(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式$\frac{{{x^2}(x+1)}}{{-{x^2}-5x+6}}$≤0的解集为(  )
A.{x|-6<x≤-1或x>1}B.{x|-6<x≤-1或x=0或x>1}
C.{x|x<-6或-1≤x<1}D.{x|x<-6或-1≤x<1且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{1}{\sqrt{1-(lo{g}_{\frac{1}{2}}x)^{2}}}$的定义域为(  )
A.($\frac{1}{2}$,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(2,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案