精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=4x2-kx-8在[5,8]上是单调减函数,则k的取值范围是[64,+∞).

分析 若函数f(x)=4x2-kx-8在[5,8]上是单调减函数,则$\frac{k}{8}$≥8,解得k的取值范围

解答 解:函数f(x)=4x2-kx-8的图象是开口朝上,且以直线x=$\frac{k}{8}$为对称轴的抛物线,
若函数f(x)=4x2-kx-8在[5,8]上是单调减函数,
则$\frac{k}{8}$≥8,
解得:k∈[64,+∞),
故答案为:[64,+∞)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.某校早上7:40开始上课,假设该校学生小张与小王在早上7:10~7:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为$\frac{9}{32}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,⊙O的割线PAB交⊙O于A、B两点,割线PCD经过圆心O,PE是⊙O的切线.已知PA=6,AB=7$\frac{1}{3}$,PO=12,则PE=4$\sqrt{5}$,⊙O的半径是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}中,a1=1,a2=$\frac{1}{3}$,an=$\frac{2}{{{a_{n-1}}}}$-$\frac{1}{{{a_{n+1}}}}$(n≥2),则a6a7=-$\frac{24057}{9607}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a、b、c是三条不重合的直线,α、β、γ是三个不重合的平面.
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,α∥c⇒a∥α;
④a∥γ,α∥γ⇒a∥α;
⑤a?α,b?α,a∥b⇒a∥α.
其中正确的命题号是①⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知2a=3,3b=8,则ab=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若等差数列{an},{bn}的前n项和分别为An,Bn,且$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+1}{4n+27}$,则$\frac{{a}_{6}}{{b}_{6}}$等于(  )
A.$\frac{4}{3}$B.$\frac{7}{4}$C.$\frac{3}{2}$D.$\frac{78}{71}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2-(a2-a)lnx-x(a<0),且函数f(x)在x=2处取得极值.
(I)求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)求函数f(x)在区间[1,e]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=asinx-bcosx(a≠0)的图象关于x=$\frac{π}{4}$对称,则y=f($\frac{3π}{4}$-x)是(  )
A.图象关于点(π,0)对称的函数B.图象关于点$(\frac{3π}{2},0)$对称的函数
C.图象关于点$(\frac{π}{2},0)$对称的函数D.图象关于点$(\frac{π}{4},0)$对称的函数

查看答案和解析>>

同步练习册答案