精英家教网 > 高中数学 > 题目详情
2.已知a、b、c是三条不重合的直线,α、β、γ是三个不重合的平面.
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,α∥c⇒a∥α;
④a∥γ,α∥γ⇒a∥α;
⑤a?α,b?α,a∥b⇒a∥α.
其中正确的命题号是①⑤.

分析 ①空间三直线的平行性具有传递性;②平行同一面的两直线不一定平行;③平行同一线的面与面的两直线不一定平行; ④平行同一面的面与面的两直线不一定平行; ⑤线面平行的判定定理.

解答 解:①空间三直线的平行性具有传递性,故为真;
②平行同一面的两直线不一定平行,故为假;
③平行同一线的面与面的两直线不一定平行,故为假; 
④平行同一面的面与面的两直线不一定平行,故为假;
⑤线面平行的判定定理,故为真. 
故答案为:①⑤.

点评 本题考查了空间几何的线、面位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若函数y=x2lga+2x+4lga有最小值-3,则a=a=10${\;}^{\frac{1}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),则sin(π+α)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若AB=2,AC=$\sqrt{2}$BC,则S△ABC的最大值为(  )
A.2$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.M是抛物线y2=4x上一点,F是焦点,且MF=4.过点M作准线l的垂线,垂足为K,则三角形MFK的面积为4$\sqrt{3}$.该抛物线的焦点与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一个焦点相同,且双曲线的离心率为2,那么该双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=4x2-kx-8在[5,8]上是单调减函数,则k的取值范围是[64,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+bx+c(a>0,a≠1,b,c∈R)
(1)若b=0,且满足f(2)=1,f(4)=73,求函数f(x)的解析式;
(2)当a=2时,若对任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求非负实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=xsinx,f'(x)为f(x)的导函数,则f'(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x-1)=x2,则 f(x2 )=(x2+1)2

查看答案和解析>>

同步练习册答案