分析 由已知条件利用递推思想依次求出数列的前7项,由此能求出结果.
解答 解:∵数列{an}中,a1=1,a2=$\frac{1}{3}$,an=$\frac{2}{{{a_{n-1}}}}$-$\frac{1}{{{a_{n+1}}}}$(n≥2),
∴$\frac{1}{{a}_{n+1}}=\frac{2}{{a}_{n-1}}-{a}_{n}$,
∴$\frac{1}{{a}_{3}}$=$\frac{2}{{a}_{1}}-{a}_{2}$=$\frac{2}{1}-\frac{1}{3}$=$\frac{5}{3}$,∴${a}_{3}=\frac{3}{5}$,
$\frac{1}{{a}_{4}}=\frac{2}{{a}_{2}}-{a}_{3}=\frac{2}{\frac{1}{3}}-\frac{3}{5}$=$\frac{27}{5}$,∴${a}_{4}=\frac{5}{27}$,
$\frac{1}{{a}_{5}}=\frac{2}{{a}_{3}}-{a}_{4}$=$\frac{2}{\frac{3}{5}}-\frac{5}{27}$=$\frac{85}{27}$,∴${a}_{5}=\frac{27}{85}$,
$\frac{1}{{a}_{6}}=\frac{2}{{a}_{4}}-{a}_{5}=\frac{2}{\frac{5}{27}}-\frac{27}{85}$=$\frac{891}{85}$,∴${a}_{6}=\frac{891}{85}$,
$\frac{1}{{a}_{7}}$=$\frac{2}{{a}_{5}}-{a}_{6}$=$\frac{2}{\frac{27}{85}}-\frac{891}{85}$=-$\frac{9607}{2295}$,∴${a}_{7}=-\frac{2295}{9607}$,
a6a7=$\frac{891}{85}×(-\frac{2295}{9607})$=-$\frac{24057}{9607}$.
故答案为:-$\frac{24057}{9607}$.
点评 本题考查数列的第6项与第7项的乘积,是基础题,解题时要认真审题,注意递推思想的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e1+e2=2$\sqrt{3}$ | B. | e1-e2=2 | C. | e1e2=2 | D. | $\frac{e_2}{e_1}>2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 志 愿 | 学 校 | 专 业 | |
| 第一志愿 | 1 | 第1专业 | 第2专业 |
| 第二志愿 | 2 | 第1专业 | 第2专业 |
| 第三志愿 | 3 | 第1专业 | 第2专业 |
| A. | 43•(A32)3 | B. | 43•(C32)3 | C. | A43•(C32)3 | D. | A43•(A32)3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com