精英家教网 > 高中数学 > 题目详情
5.设函数$f(x)=\left\{{\begin{array}{l}{{x^2}+bx+c,x≤0}\\{-2,x>0}\end{array}}\right.$,若f(-4)=f(0),f(-2)=f(2),则函数y=f(x)与y=-x的交点的个数是(  )
A.1B.2C.3D.4

分析 先求出函数的解析式,再根据f(x)=-x,分别求出方程的解,即可得到函数y=f(x)与y=-x的交点的个数

解答 解:∵f(-4)=f(0),
∴16-4b+c=c,
解得,b=4;
∵f(-2)=f(2),
∴4-8+c=-2;
解得,c=2;
故函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2,x≤0}\\{-2,x>0}\end{array}\right.$;
当x>0时,f(x)=-x可化为-2=-x,
解得,x=2;
当x≤0时,f(x)=-x可化为x2+5x+2=0,
x=$\frac{-5-\sqrt{17}}{2}$,或x=$\frac{-5+\sqrt{17}}{2}$
故函数y=f(x)与y=-x的交点的个数为3;
故选C

点评 本题考查了函数的零点的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-7(x<-1)}\\{\sqrt{x+1}(x≥-1)}\end{array}\right.$,若f(t)<1,则使函数g(t)=t+$\frac{1}{at}$为减函数的a的取值范围是(  )
A.(-∞,$\frac{1}{9}$]B.(0,$\frac{1}{9}$)C.(0,$\frac{1}{9}$]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设F为抛物线C:y2=4x的焦点,过F且倾斜角为60°的直线交抛物线C于A,B两点,O为坐标原点,则△OAB的面积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为[0,1],则函数f(x+2)的定义域为(  )
A.[-2,-1]B.[2,3]C.[-2,2]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,正方体ABCD-A′B′C′D′的棱长为a,点P是棱AD上一点,且$AP=\frac{a}{3}$,过三点B′,D′,P的平面交底面ABCD于PQ,Q在棱AB上,则PQ=$\frac{\sqrt{2}a}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}-1,x∈[1,+∞)\\ \frac{1}{x},x∈(0,1)\\-x-1,x∈(-∞,0]\end{array}\right.$
(1)求$f[f(\frac{3}{2})]$的值
(2)请作出此函数的图象
(3)若$f(x)=-\frac{1}{2}$,请求出此时自变量x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校早上7:40开始上课,假设该校学生小张与小王在早上7:10~7:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为$\frac{9}{32}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式log2(2x-4)>2的解集为(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}中,a1=1,a2=$\frac{1}{3}$,an=$\frac{2}{{{a_{n-1}}}}$-$\frac{1}{{{a_{n+1}}}}$(n≥2),则a6a7=-$\frac{24057}{9607}$.

查看答案和解析>>

同步练习册答案