精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{4},x≥0}\\{-{x}^{4},x<0}\end{array}\right.$,?x∈[-1,2],使f(2x+t)≥4f(1-x)成立,求实数t的取值范围t≥-$\sqrt{2}$-4.

分析 由已知函数f(x)=$\left\{\begin{array}{l}{{x}^{4},x≥0}\\{-{x}^{4},x<0}\end{array}\right.$在R上为增函数,结合复合函数的单调性,可得y=f(2x+t)在区间[-1,2]上为增函数,y=4f(1-x)在区间[-1,2]上为减函数,若?x∈[-1,2],使f(2x+t)≥4f(1-x)成立,则y=f(2x+t)在区间[-1,2]上最大值M=f(4+t)与y=4f(1-x)在区间[-1,2]上最小值m=4f(-1)=-4满足:M≥m,进而得到实数t的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{4},x≥0}\\{-{x}^{4},x<0}\end{array}\right.$在R上为增函数,
故y=f(2x+t)在区间[-1,2]上为增函数,y=4f(1-x)在区间[-1,2]上为减函数,
若?x∈[-1,2],使f(2x+t)≥4f(1-x)成立,
则y=f(2x+t)在区间[-1,2]上最大值M=f(4+t)与y=4f(1-x)在区间[-1,2]上最小值m=4f(-1)=-4满足:M≥m,
即f(4+t)≥-4=f(-$\sqrt{2}$),
即4+t≥-$\sqrt{2}$,
故t≥-$\sqrt{2}$-4,
即实数t的取值范围t≥-$\sqrt{2}$-4,
故答案为:t≥-$\sqrt{2}$-4

点评 本题考查的知识点是分段函数的应用,复合函数的单调性,幂函数的单调性,是函数图象和性质的简单综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点$F(\sqrt{3},0)$,点$M(-\sqrt{3},\frac{1}{2})$在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线l过点F,且与椭圆C交于A,B两点,过原点O作直线l的垂线,垂足为P,如果△OAB的面积为$\frac{λ|AB|+4}{2|OP|}$(λ为实数),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=4cos($\frac{πx}{2}$+$\frac{π}{3}$),如果对于任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将全体正整数排成如图的一个三角形数阵,按照此排列规律,第10行从左向右的第5个数为50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.
(Ⅰ)求通项公式an
(Ⅱ)设bn=$\frac{{a}_{n}+5}{3}$2${\;}^{{a}_{n}+2}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x2-x-2>0},集合B={x||x-a|<3},若A∪B=R,则实数a的取值范围是(  )
A.[1,2]B.(-1,2)C.[-1,2]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x+3}{{x}^{2}+1}$,g(x)=x-ln(x-p).
(Ⅰ)求函数f(x)的图象在点($\frac{1}{3}$,f($\frac{1}{3}$))处的切线方程;
(Ⅱ)判断函数g(x)的零点个数,并说明理由;
(Ⅲ)已知数列{an}满足:0<an≤3,n∈N*,且3(a1+a2+…+a2015)=2015.若不等式f(a1)+f(a2)+..+f(a2015)≤g(x)在x∈(p,+∞)时恒成立,求实数p的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了保护环境,某市设立了若干个自行车自动租赁点,规定租车时间不超过一小时不收费,一小时以上不超过两小时收费一元,两小时以上,不超过三小时收费两元(不足一小时,按一小时计),甲、乙两人各租车一辆,甲、乙租车时间不超过一小时的概率为$\frac{1}{2}$、$\frac{1}{4}$,一小时以上,不超过两小时的概率为$\frac{1}{4}$、$\frac{1}{2}$,且两人租车时间都不会超过三小时(甲、乙两人租车时间相互独立).
(1)求甲、乙两人所付租车费相等的概率;
(2)设两人租车费用之和为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若角A为锐角,且$\overrightarrow{AB}$=(2,3),$\overrightarrow{AC}$=(3,m),则实数m的取值范围是$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.

查看答案和解析>>

同步练习册答案