精英家教网 > 高中数学 > 题目详情
3.在△ABC中,若角A为锐角,且$\overrightarrow{AB}$=(2,3),$\overrightarrow{AC}$=(3,m),则实数m的取值范围是$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.

分析 由角A为锐角,可得$\overrightarrow{AB}•\overrightarrow{AC}>0$且$\overrightarrow{AB},\overrightarrow{AC}$不共线,代入坐标表示得到关于m的不等式,则m的范围可求.

解答 解:由于角A为锐角,
∴$\overrightarrow{AB}•\overrightarrow{AC}>0$且$\overrightarrow{AB},\overrightarrow{AC}$不共线,
∴6+3m>0且2m≠9,解得m>-2且m$≠\frac{9}{2}$.
∴实数m的取值范围是$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.
故答案为:$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.

点评 本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{4},x≥0}\\{-{x}^{4},x<0}\end{array}\right.$,?x∈[-1,2],使f(2x+t)≥4f(1-x)成立,求实数t的取值范围t≥-$\sqrt{2}$-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(1,2)、B(-2,3),在x轴上找一点P,使|PA|+|PB|有最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合M={y|y=2x,x≤1},N={x|$\frac{x-1}{x+1}$≤0},则  N∩M(  )
A.(1-1,]B.(0,1]C.[-1,1]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2为椭圆$\frac{x^2}{4}+{y^2}$=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{7}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m≥0,函数f(x)=2|x-1|-|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a-2b+c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反,且|$\overrightarrow{a}$|=3与|$\overrightarrow{b}$|=4,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“存在x≥2,使x2≥4”的否定是(  )
A.对任意x≥2,都有x2<4B.对x<2,都有x2≥4
C.存在x≥2,使x2<4D.存在x<2,使x2≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2015}}}}{{{2^{2015}}{a_1}}}$的值为(  )
A.$\frac{1}{2015}$B.-$\frac{1}{2015}$C.$\frac{1}{4030}$D.-$\frac{1}{4030}$

查看答案和解析>>

同步练习册答案