精英家教网 > 高中数学 > 题目详情
8.已知m≥0,函数f(x)=2|x-1|-|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a-2b+c=m,求a2+b2+c2的最小值.

分析 (Ⅰ)利用绝对值不等式,可得f(x)max=m+2,结合数f(x)=2|x-1|-|2x+m|的最大值为3,即可求实数m的值;
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(-2)2+12]≥(a-2b+c)2,即可求a2+b2+c2的最小值.

解答 解:(Ⅰ)f(x)=2|x-1|-|2x+m|=|2x-2|-|2x+m|≤|(2x-2)-(2x+m)|=|m+2|
∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(-2)2+12]≥(a-2b+c)2
∵a-2b+c=m=1,∴${a^2}+{b^2}+{c^2}≥\frac{1}{6}$,
当$\frac{a}{1}=\frac{b}{-2}=\frac{c}{1}$,即$a=\frac{1}{6},b=-\frac{1}{3},c=\frac{1}{6}$时取等号,∴a2+b2+c2的最小值为$\frac{1}{6}$.

点评 本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x2-x-2>0},集合B={x||x-a|<3},若A∪B=R,则实数a的取值范围是(  )
A.[1,2]B.(-1,2)C.[-1,2]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$,sinθ),$\overrightarrow{n}$=(1,cosθ),θ∈(0,$\frac{π}{2}$),$\overrightarrow{m}$与$\overrightarrow{n}$共线.
(Ⅰ)求θ的值;
(Ⅱ)求函数f(x)=sinx+sin(x-θ)在区间上[0,$\frac{5π}{6}$]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,若a=1,b=2,则输出的结果是(  )
A.9B.11C.13D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若角A为锐角,且$\overrightarrow{AB}$=(2,3),$\overrightarrow{AC}$=(3,m),则实数m的取值范围是$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知3A${\;}_{8}^{n}$=4A${\;}_{9}^{n-1}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}$(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在边长为12的正方形AA′A${\;}_{1}^{′}$A1中,BB1∥CC1∥AA1,且AB=3,且BC=4,AA${\;}_{1}^{′}$分别交BB1,CC1于点P,Q,将该正方形沿BB1,CC1折叠,使得A′A${\;}_{1}^{′}$与AA1重合,构成图2所示的三棱柱ABC-A1B1C1,在图2中:
(1)求证:AB⊥PQ;
(2)在底边AC上有一点M,使得BM∥平面APQ,求点M到平面PAQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)满足对于任意的x>0恒有f(3x)=3f(x)成立,当1≤x≤3时,f(x)=1-|x-2|,则集合{x|f(x)=f(33)}中最小的元素为15.

查看答案和解析>>

同步练习册答案