精英家教网 > 高中数学 > 题目详情
20.设直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}$(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.

分析 (Ⅰ)由ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$得ρsin2θ=6cosθ,ρ2sin2θ=6ρcosθ,可得直角坐标方程,可指出曲线是抛物线;
(Ⅱ)利用参数的几何意义,即可求|AB|.

解答 解:(Ⅰ)由ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$得ρsin2θ=6cosθ,ρ2sin2θ=6ρcosθ,∴y2=6x.
∴曲线C表示顶点在原点,焦点在x上的抛物线…(5分)
(Ⅱ)将$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}\right.$化为$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=-\frac{{\sqrt{3}}}{2}t\end{array}\right.$,代入y2=6x得t2-4t-12=0(*),
由(*)式解得t1=6,t2=-2,|AB|=|t1-t2|=8.…(10分)

点评 本题考查点的极坐标和直角坐标的互化,以及利用参数的几何意义解决问题.利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知F1,F2分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,B是椭圆的上顶点,BF2的延长线交椭圆于点A,过点A垂直于x轴的直线交椭圆于点C.
(1)若点C坐标为$(\frac{4}{3},\frac{1}{3})$,且|BF2|=$\sqrt{2}$,求椭圆的方程;
(2)若F1C⊥AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合M={y|y=2x,x≤1},N={x|$\frac{x-1}{x+1}$≤0},则  N∩M(  )
A.(1-1,]B.(0,1]C.[-1,1]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m≥0,函数f(x)=2|x-1|-|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a-2b+c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反,且|$\overrightarrow{a}$|=3与|$\overrightarrow{b}$|=4,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q.若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{13}}{5}$C.$\frac{\sqrt{7}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“存在x≥2,使x2≥4”的否定是(  )
A.对任意x≥2,都有x2<4B.对x<2,都有x2≥4
C.存在x≥2,使x2<4D.存在x<2,使x2≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-$\frac{1}{x}+\frac{alnx}{2}$
(Ⅰ)当a=-1时,求函数f(x)在点A(1,0)处的切线方程;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若函数f(x)有两个极值点x1和x2,设过M(x1,f(x1)),N(x2,f(x2))的直线的斜率为k,求证:k>a+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与C的交点为Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)点A(-a,a)(a>0)在抛物线C上,是否存在直线l:y=kx+4与C交于点M,N,使得△MAN是以MN为斜边的直角三角形?若存在,求出直线l的方程;若不存在说明理由.

查看答案和解析>>

同步练习册答案