精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与C的交点为Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)点A(-a,a)(a>0)在抛物线C上,是否存在直线l:y=kx+4与C交于点M,N,使得△MAN是以MN为斜边的直角三角形?若存在,求出直线l的方程;若不存在说明理由.

分析 (I)设Q(4,y0),代入x2=2py,结合|QF|=$\frac{5}{4}$|PQ|.求出p,即可求解C的方程.
(II)求出A(-4,4),假设存在满足条件的直线l,设M(x1,y1),N(x2,y2),联立方程组利用韦达定理以及判别式,通过三角形是直角三角形,数量积为0求解k即可.

解答 解:(I)设Q(4,y0),代入x2=2py,
得${y_0}=\frac{8}{p}\;,\;∴|{PQ}|=\frac{8}{p}\;,\;|{QF}|=\frac{p}{2}+{y_0}=\frac{p}{2}+\frac{8}{p}$.
由题设得$\frac{p}{2}+\frac{8}{p}=\frac{5}{4}×\frac{8}{p}$,解得p=-2(舍去)或p=2,
∴C的方程为x2=4y…(4分)
(II)由x2=4y知,点A(-4,4),假设存在满足条件的直线l,
设M(x1,y1),N(x2,y2),联立方程组$\left\{\begin{array}{l}{x^2}=4y\\ y=kx+4\end{array}\right.$得x2-4kx-16=0,
△=16(k2+4)>0,
x1+x2=4k,x1x2=-16…(6分)
由题意得$\overrightarrow{AM}•\overrightarrow{AN}=({x_1}+4,{y_1}-4)({x_2}+4,{y_2}-4)=({x_1}+4)({x_2}+4)+{k^2}{x_1}{x_2}$=(1+k2)x1x2+4(x1+x2)+16=0,…(10分)
代入x1+x2=4k,x1x2=-16得-(1+k2)+k+1=0,
解得k=0(舍)或k=1…(12分)

点评 本题考查抛物线方程的求法,直线与抛物线的位置关系的综合应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设直线l的参数方程为$\left\{\begin{array}{l}x=\frac{3}{2}+tsin\frac{5π}{6}\\ y=-tcos\frac{π}{6}\end{array}$(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为ρ=$\frac{6cosθ}{{{{sin}^2}θ}}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\frac{a}{{x}^{2}}$+lnx,g(x)=x3-x2-3.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对于任意的${x_1},{x_2}∈[{\frac{1}{3},2}]$,都有x1•f(x1)≥g(x2)成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)满足对于任意的x>0恒有f(3x)=3f(x)成立,当1≤x≤3时,f(x)=1-|x-2|,则集合{x|f(x)=f(33)}中最小的元素为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x+y-3≤0}\\{y≥0}\end{array}\right.$,则$\frac{y}{x+2}$的取值范围是[0,$\frac{3}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是(  )
A.870B.30C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an=n•kn(n∈N*,0<k<1)给出下列命题:
①当k=$\frac{1}{2}$时,数列{an}为递减数列
②当$\frac{1}{2}$<k<1时,数列{an}不一定有最大项
③当0<k<$\frac{1}{2}$时,数列{an}为递减数列
④当$\frac{k}{1-k}$为正整数时,数列{an}必有两项相等的最大项
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)从这所学校报考飞行员的同学中任选一人,求这个人体重超过60公斤的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),且向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$平行,则实数k的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步练习册答案