精英家教网 > 高中数学 > 题目详情
5.若x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{3x+y-3≤0}\\{y≥0}\end{array}\right.$,则$\frac{y}{x+2}$的取值范围是[0,$\frac{3}{5}$].

分析 作出不等式组对应的平面区域,利用$\frac{y}{x+2}$的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图,
设k=$\frac{y}{x+2}$,则k的几何意义为区域内的点到定点D(-2,0)的斜率,
由图象知:
AD的斜率最大,DC的斜率最小,最小为0,
由$\left\{\begin{array}{l}{x-y+1=0}\\{3x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即A($\frac{1}{2}$,$\frac{3}{2}$),
即AD的斜率k=$\frac{\frac{3}{2}}{\frac{1}{2}+2}$=$\frac{3}{5}$,
故0≤$\frac{y}{x+2}$≤$\frac{3}{5}$,
故答案为:[0,$\frac{3}{5}$].

点评 本题主要考查线性规划的应用,根据目标函数的几何意义以及直线斜率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反,且|$\overrightarrow{a}$|=3与|$\overrightarrow{b}$|=4,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合M={x|2x2-y2=1},N={y|y=x2},则M∩N=(  )
A.{(1,1)}B.{(-1,1),(1,1)}C.$[{\frac{1}{2},+∞})$D.$[{\frac{{\sqrt{2}}}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),则$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+…+\frac{{{a_{2015}}}}{{{2^{2015}}{a_1}}}$的值为(  )
A.$\frac{1}{2015}$B.-$\frac{1}{2015}$C.$\frac{1}{4030}$D.-$\frac{1}{4030}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an}的通项为an=(  )
A.$\frac{1}{2n-1}$B.2n-1C.$\frac{1}{3n-2}$D.3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与C的交点为Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)点A(-a,a)(a>0)在抛物线C上,是否存在直线l:y=kx+4与C交于点M,N,使得△MAN是以MN为斜边的直角三角形?若存在,求出直线l的方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在棱长为2的正方体ABCD-A1B1C1D1内(含正方体表面)任取一点M,则$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$≥1的概率是(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中a1=1,an+1-Sn=n+1,n∈N*,{an}的前n项和为Sn
(Ⅰ)证明:数列{an+1}是等比数列;
(Ⅱ)对一切n∈N*,若p(an+1)>3n-1恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.极坐标系与直角坐标系xOy有相同的长度单位,以原点o为极点,以x轴正半轴为极轴.曲线C的极坐标方程为 ρ2=4,已知倾斜角为$\frac{π}{4}$的直线?经过点P(1,1).
(Ⅰ)写出直线?的参数方程;曲线C的直角坐标方程;
(Ⅱ)设直线?与曲线C相交于A,B两点,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案