2£®ÒÑÖªÊýÁÐ{an}Âú×ãan=n•kn£¨n¡ÊN*£¬0£¼k£¼1£©¸ø³öÏÂÁÐÃüÌ⣺
¢Ùµ±k=$\frac{1}{2}$ʱ£¬ÊýÁÐ{an}ΪµÝ¼õÊýÁÐ
¢Úµ±$\frac{1}{2}$£¼k£¼1ʱ£¬ÊýÁÐ{an}²»Ò»¶¨ÓÐ×î´óÏî
¢Ûµ±0£¼k£¼$\frac{1}{2}$ʱ£¬ÊýÁÐ{an}ΪµÝ¼õÊýÁÐ
¢Üµ±$\frac{k}{1-k}$ΪÕýÕûÊýʱ£¬ÊýÁÐ{an}±ØÓÐÁ½ÏîÏàµÈµÄ×î´óÏî
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

·ÖÎö ¢ÙÓÉÓÚ$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$È¡³ö·´Àý˵Ã÷½áÂÛ´íÎó
¢ÚÓÉÓÚ$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$£¬ÔÙ¸ù¾ÝkµÄÌõ¼þÌÖÂÛ¼´¿ÉµÃ³ö£®$\frac{n+1}{n}$Ò»¶¨ÓÐ×î´óÏÔò˵Ã÷¢ÚÒ»¶¨ÓÐ×î´óÏî
¢ÛÓÉ$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$$£¼\frac{n+1}{2n}$¡Ü1£¬µÃ³ö½áÂÛ³ÉÁ¢
¢Üµ±$\frac{k}{1-k}$ΪÕýÕûÊýʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$=1£¬µÃ³ö½áÂÛÕýÈ·£®

½â´ð ½â£º¢Ùµ±k=$\frac{1}{2}$ʱ£¬${a}_{n}=n£¨\frac{1}{2}£©^{n}$£¬¡à$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©£¨\frac{1}{2}£©^{n+1}}{n£¨\frac{1}{2}£©^{n}}$=$\frac{n+1}{2n}$£¬µ±n=1ʱ£¬a1=a2£¬Òò´ËÊýÁÐ{an}²»ÊǵݼõÊýÁУ¬¹Ê¢Ù²»ÕýÈ·£»
¢Úµ±$\frac{1}{2}$£¼k£¼1ʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$=k+$\frac{k}{n}$£¬µ±n£¾$\frac{1-k}{k}$ʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$£¼1£¬ËùÒÔÊýÁÐ{an}Ò»¶¨ÓÐ×î´óÏ¢Ú²»ÕýÈ·£®
¢Ûµ±0£¼k£¼$\frac{1}{2}$ʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$$£¼\frac{n+1}{2n}$¡Ü1£¬¡àan+1£¼an£®
Òò´ËÊýÁÐ{an}ΪµÝ¼õÊýÁУ¬¢ÛÕýÈ·£®
¢Üµ±$\frac{k}{1-k}$ΪÕýÕûÊýʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{£¨n+1£©{k}^{n+1}}{n{k}^{n}}$=$\frac{£¨n+1£©k}{n}$=1£¬Òò´ËÊýÁÐ{an}±ØÓÐÁ½ÏîÏàµÈµÄ×î´óÏ¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡£ºC

µãÆÀ ±¾Ì⿼²éÁËÊýÁеĵ¥µ÷ÐÔ¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÃüÌâ¡°´æÔÚx¡Ý2£¬Ê¹x2¡Ý4¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®¶ÔÈÎÒâx¡Ý2£¬¶¼ÓÐx2£¼4B£®¶Ôx£¼2£¬¶¼ÓÐx2¡Ý4
C£®´æÔÚx¡Ý2£¬Ê¹x2£¼4D£®´æÔÚx£¼2£¬Ê¹x2¡Ý4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èô£¨2x-1£©2015=a0+a1x+a2x2+¡­+a2015x2015£¨x¡ÊR£©£¬Ôò$\frac{1}{2}+\frac{a_2}{{{2^2}{a_1}}}+\frac{a_3}{{{2^3}{a_1}}}+¡­+\frac{{{a_{2015}}}}{{{2^{2015}}{a_1}}}$µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2015}$B£®-$\frac{1}{2015}$C£®$\frac{1}{4030}$D£®-$\frac{1}{4030}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬Ö±Ïßx=4ÓëxÖáµÄ½»µãΪP£¬ÓëCµÄ½»µãΪQ£¬ÇÒ|QF|=$\frac{5}{4}$|PQ|£®
£¨¢ñ£©ÇóCµÄ·½³Ì£»
£¨¢ò£©µãA£¨-a£¬a£©£¨a£¾0£©ÔÚÅ×ÎïÏßCÉÏ£¬ÊÇ·ñ´æÔÚÖ±Ïßl£ºy=kx+4ÓëC½»ÓÚµãM£¬N£¬Ê¹µÃ¡÷MANÊÇÒÔMNΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÔÚÀⳤΪ2µÄÕý·½ÌåABCD-A1B1C1D1ÄÚ£¨º¬Õý·½Ìå±íÃæ£©ÈÎȡһµãM£¬Ôò$\overrightarrow{A{A}_{1}}$•$\overrightarrow{AM}$¡Ý1µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{6}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èôsin¦Á=-$\frac{3}{5}$£¬¦Á¡Ê£¨-$\frac{¦Ð}{2}$£¬0£©£¬Ôò cos£¨¦Á+$\frac{5¦Ð}{4}$£©=$-\frac{7\sqrt{2}}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÊýÁÐ{an}ÖÐa1=1£¬an+1-Sn=n+1£¬n¡ÊN*£¬{an}µÄǰnÏîºÍΪSn£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ{an+1}ÊǵȱÈÊýÁУ»
£¨¢ò£©¶ÔÒ»ÇÐn¡ÊN*£¬Èôp£¨an+1£©£¾3n-1ºã³ÉÁ¢£¬ÇóʵÊýpµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}£¬a1=$\frac{1}{2}$£¬ÇÒÂú×ã2an+1=1-$\frac{{a}_{n+1}}{{a}_{n}}$£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{a}_{n}}$}ÊǵȲîÊýÁУ»
£¨2£©Éèbn=anan+1£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=-2x3+3x2+12x-11£¬g£¨x£©=kx+9£¬Èç¹ûf£¨x£©¡Üg£¨x£©ÔÚ[-2£¬+¡Þ£©ÉϺã³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸